设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| 简介:
1.图中a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态。 A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 2.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有 A.l2>l1 B.l4>l3 C.l1>l3 D.l2=l4 3.如图所示,a、b两根轻弹簧系住一球,球处于静止状态。撤去弹簧a的瞬间,小球的加速度大小为a=2.5m/S2,若弹簧a不动,则撤去弹簧b的瞬间小球加速度可能为: A. 7.5m/S2,方向竖直向上. B. 7.5m/S2,方向竖直向下. C. 12.5m/S2,方向竖直向上. D. 12.5m/S2,方向竖直向下. 4.如图所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O,将弹簧压缩,弹簧被压缩了x0时,物块的速度变为零。从物块与弹簧接触开始,物块的加速度的大小随下降的位移x变化的图象,可能是( ) 5.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为 A.m1g/k1 B.m2g/k1 C.m1g/k2 D.m2g/k2 6.如图5所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动,在运动过程中,对A、B两物体及弹簧组成的系统,正确的说法是(整个过程中弹簧不超过其弹性限度) A.动量始终守恒; B.机械能始终守恒; C.当弹簧伸长到最长时,系统的机械能最大; D.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物速度为零。 7、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是 ,F的最大值是 。 8.为了测量小木板和斜面的滑动摩擦系数,某同学设计了如下的实验,在小木板上固定一个弹簧秤,(弹簧秤的质量不计),弹簧秤下吊一个光滑的小球。将木板连同小球一起放在斜面上,如图所示,用手固定住木板时,弹簧秤的示数为F1,放手后木板沿斜面下滑,稳定时弹簧秤的示数为F2,测的斜面的倾角为(,由测量的数据可以算出小木板跟斜面间的滑动摩擦系数是多少?
9、质量为m的物块用压缩的轻质弹簧卡在竖直放置的矩形匣子中,如图14所示,在匣子的顶部和底部都装有压力传感器,当匣子随升降机以a=2.0m/s2的加速度竖直向上做匀减速运动时,匣子项部的压力传感器显示的压力为6.0N,底部的压力传感器显示的压力为10.0N(g=10m/s2) (1)当匣子顶部压力传感器的示数是底部传感器的示数的一半时,试确定升降机的运动情况。 (2)要使匣子顶部压力传感器的示数为零,升降机沿竖直方向的运动情况可能是怎样的? 10.如图所示,物体B和物体C用劲度系数为k的轻弹簧连接并竖直地静置于水平地面上,此时弹簧的势能为E。这时一个物体A从物体B的正上方由静止释放,下落后与物体B碰撞,碰撞后A与B立刻一起向下运动,但A、B之间并不粘连。已知物体A、B、C的质量均为M,重力加速度为g,忽略空气阻力。求当物体A从距B多大的高度自由落下时,才能使物体C恰好离开水平地面? 11、如图所示,A、B两滑环分别套在间距为1m的光滑细杆上,A和B的质量之比为1:3,用一自然长度为1m的轻弹簧将两环相连,在A环上作用一沿杆方向的、大小为20N的拉力F,当两环都沿杆以相同的加速度运动时,弹簧与杆夹角为53° (cos53°=0.6)。求弹簧的劲度系数k为多少? 12.在绝缘水平面上放一质量m=2.0×10-3kg的带电滑块A,所带电荷量q=1.0×10-7C.在滑块A的左边l=0.3m处放置一个不带电的绝缘滑块B,质量M=4.0×10-3kg,B与一端连在竖直墙壁上的轻弹簧接触(不连接)且弹簧处于自然状态,弹簧原长S=0.05m.如图所示,在水平面上方空间加一水平向左的匀强电场,电场强度的大小为E=4.0×105N/C,滑块A由静止释放后向左滑动并与滑块B发生碰撞,设碰撞时间极短,碰撞后两滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E0=3.2×10-3J,两滑块始终没有分开,两滑块的体积大小不计,与水平面间的动摩擦因数均为μ=0.5,g取10m/s2。求: (1)两滑块碰撞后刚结合在一起的共同速度v; (2)两滑块被弹簧弹开后距竖直墙壁的最大距离s. 13.(8分)如图所示,质量均为m的两个小球A、B套在光滑水平直杆P上,整个直杆被固定于竖直转轴上,并保持水平,两球间用劲度系数为k,自然长度为L的轻质弹簧连接在一起,左边小球被轻质细绳拴在竖直转轴上,细绳长度也为L,现欲使横杆AB随竖直转轴一起在水平面内匀速转动,其角速度为ω,求当弹簧长度稳定后,细绳的拉力和弹簧的总长度为多大? 答案: 1. A、D 2.D;3、B D 4、D ;5.C 6 AC ; 9.(1)当a=2m/s2竖直向下时,由牛顿第二定律,有F上+rng—F下=ma m=0.5kg、 当匣子顶部板压力传感器的示数是底部传感器的示数的一半时, F上=F下=5N 由牛顿第二定律,对m有F上+mg—2F下 =ma′ a′=0 所以升降机应作匀速运动 (2)若F上=0,则F下≥10N,设升降机的加速度为a1,则:F上—mg=ma1 a1=(F下—mg)/m=(10—5)/0.5=10m/s2, 故升降机作向上的匀加速或向下的匀蛾逮运动,加速度a≥10m/s2. 当C刚好离开地面时,由胡克定律得弹簧伸长量为x=Mg/k,由于对称性,所以弹簧的弹性势能仍为E。当弹簧恢复原长时A、B分离,设此时A、B的速度为v3,则对A、B一起运动的过程中,由机械能守恒得: , 从A、B分离后到物体C刚好离开地面的过程中,物体B和弹簧组成的系统机械能守恒,即 。 联立以上方程解得:。 12解:(1)设两滑块碰前A的速度为v1,由动能定理有 解得:v1=3m/s A、B两滑块碰撞,由于时间极短动量守恒,设共同速度为v
解得:v=1.0m/s (2)碰后A、B一起压缩弹簧至最短,设弹簧压缩量为x1,由动能定理有:
解得:x1=0.02m 设反弹后A、B滑行了x2距离后速度减为零,由动能定理得: 解得:x2≈0.05m 以后,因为qE>μ(M+m)g,滑块还会向左运动,但弹开的距离将逐渐变小,所以,最大距离为:S=x2+s-x1=0.05m+0.05m-0.02m= 0.08m 13解析:设直杆匀速转动时,弹簧伸长量为x, A、B两球受力分别如图所示,据牛顿第二 定律得: 对A球有:FT-F=mω2L………………2分 对B球有:F= mω2(2L+x)-……………………2分 | ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||