第二节 气体的实验定律
教学用具:验证玻意耳定律和查理定律的实验装置各一套.
教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生自己分析总结、推理归纳实验规律.
课时安排:2课时
教学步骤
(一)课堂引入:
教师讲解:我们学习了描述气体的三个物理参量——体积、温度、压强,并知道对于一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下!
(二)新课讲解:
教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我们设定温度不变,研究气体体积和压强的关系.
1、气体的压强与体积的关系——玻意耳定律
演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的关系.让学盛帮助记录数据.
压强 Pa |
0.5 |
1.0 |
1.5 |
2.0 |
2.5 |
3.0 |
3.5 |
4.0 |
体积V/L |
8.0 |
4.0 |
2.7 |
2.0 |
1.6 |
1.3 |
1.1 |
1.0 |
|
4.0 |
4.0 |
4.05 |
4.0 |
4.0 |
3.9 |
3.85 |
4.0 |
以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示.
可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线的温度越高.
通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的乘积保持不变,即: 常量
或压强p与体积V成反比,即:
这个规律叫做玻意耳定律,也可以写成: 或
例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大.
例题1:如图所示,已知: ,求: 和
解:根据图像可得:
∵ 封闭在管中的气体质量、温度均不变.
即:
解得:
2、气体的压强与温度的关系——查理定律
演示实验:一定质量的气体,在体积保持不变的情况下改变温度,研究压强与温度的关系.让学生帮助记录数据.
压强 Pa |
1.0 |
1.1 |
1.2 |
1.3 |
1.4 |
1.5 |
1.6 |
1.7 |
温度T/K |
300 |
330 |
360 |
390 |
420 |
450 |
480 |
510 |
|
|
|
|
|
|
|
|
|
以横坐标表示气体的温度,纵坐标表示气体的压强,作出压强p与温度T的关系如图所示.
可见,一定质量的气体,在体积不变的情况下,压强p与热力学温度的关系,图线为通过原点的一条直线,称为等容线.
①等容线上的每一点表示气体的一个状态.②同一等容线上每一状态的体积均相同.③对同一部分气体,在不同体积下的等容线为一簇通过原点的直线,离横轴越远的等容线的体积越大( ).
通过实验得出,一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T之比保持不变,即: 常量
或压强p与热力学温度T成正比,即:
这个规律叫做查理定律,也可以写成: 或
例如:乒乓球挤瘪后,放在热水里泡一会儿,由于球内气体温度升高,压强增大,就把乒乓球挤回球形.
例题2:一定质量的某种气体在20℃时的压强是 Pa,保持体积不变,温度升高到50℃,压强是多少?温度降到-17℃时,压强是多少?
解:∵ 因气体的质量和体积均不变
∴
即
3、气体的体积和温度的关系——盖·吕萨克定律
教师讲解:由前面我们得到: ; ;
则可以得到:
也就是说:一定质量的气体,在压强不变的情况下,体积与热力学温度成正比,即: ,
这个规律叫做盖·吕萨克定律,也可以写成: 或
一定质量的气体,在压强不变的情况下,体积V与热力学温度的关系图线为通过原点的直线,称为等压线.
①等压线上每一点表示气体的一个状态.②同一等压线上每一状态的压强相等.③对同一部分气体,在不同压强下的等压线为一簇通过原点的直线,离横轴越远的等压线的压强越大( ).
教师总结:理想气体的状态方程是由实验定律推证出来的,我们也可以把玻意耳定律、查理定律、盖·吕萨克定律分别看成是在温度、体积、压强不变的情况下理想气体状态方程的特殊情况,或者说,理想气体的状态方程包括了三个实验定律.
(三)板书设计
二、气体实验定律
1、气体的压强与体积的关系——玻意耳定律
内容: 图像:
表达式:
2、气体的压强与温度的关系——查理定律
内容: 图像:
表达式:
3、气体的温度与体积的关系——盖·吕萨克定律:
内容: 图像:
表达式: