第四节 简单的线性规划
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程 的解为坐标的点的集合 是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式) 的解为坐标的点的集合 是什么图形呢?
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式 ,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点 成立;对直线l左下方的任意点 成立,下面我们证明这个事实.
在直线 上任取一点 ,过点P作垂直于y轴的直线 ,在此直线上点P右侧的任意一点 ,都有 ∴
于是
所以
因为点 ,是L上的任意点,所以,对于直线 右上方的任意点 ,
都成立
同理,对于直线 左下方的任意点 ,
都成立
所以,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集点.
是直线 右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集合 是直线 左下方的平面区域.
2.二元一次不等式 和 表示平面域.
(1)结论:二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式 就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线 同一侧的所有点 ,把它的坐标 代入 ,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点 ,以 的正负情况便可判断 表示这一直线哪一侧的平面区域,特殊地,当 时,常把原点作为此特殊点.
【应用举例】
例1 画出不等式 表示的平面区域
解;先画直线 (画线虚线)取原点(0,0),代入 ,
∴ ∴ 原点在不等式 表示的平面区域内,不等式 表示的平面区域如图阴影部分.
例2 画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式 表示直线 上及右上方的平面区域, 表示直线 上及右上方的平面区域, 上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1) (2) (3)
(4) (5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式 表示的区域在 的( ).
A.右上方 B.右下方 C.左上方 D.左下方
2.不等式 表示的平面区域是( ).
3.不等式组 表示的平面区域是( ).
4.直线 右上方的平面区域可用不等式 表示.
5.不等式组 表示的平面区域内的整点坐标是 .
6.画出 表示的区域.
答案:
1.B 2.D 3.B 4. 5.(-1,-1)
6.
线性规划教学设计方案(二)
教学目标
巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.
重点难点
理解二元一次不等式表示平面区域是教学重点.
如何扰实际问题转化为线性规划问题,并给出解答是教学难点.
教学步骤
【新课引入】
我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.
【线性规划】
先讨论下面的问题
设 ,式中变量x、y满足下列条件
①
求z的最大值和最小值.
我们先画出不等式组①表示的平面区域,如图中 内部且包括边界.点(0,0)不在这个三角形区域内,当 时, ,点(0,0)在直线 上.
作一组和 平等的直线
可知,当l在 的右上方时,直线l上的点 满足 .
即 ,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点 的直线 ,所对应的t最小,所以
在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.
是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于 又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数 在线性约束条件①下的最大值和最小值问题.
线性约束条件除了用一次不等式表示外,有时也有一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解 叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
【应用举例】
例1 解下列线性规划问题:求 的最大值和最小值,使式中的x、y满足约束条件
解:先作出可行域,见图中 表示的区域,且求得 .
作出直线 ,再将直线 平移,当 的平行线 过B点时,可使 达到最小值,当 的平行线 过C点时,可使 达到最大值.
通过这个例子讲清楚线性规划的步骤,即:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找出最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值.
例2 解线性规划问题:求 的最大值,使式中的x、y满足约束条件.
解:作出可行域,见图,五边形OABCD表示的平面区域.
作出直线 将它平移至点B,显然,点B的坐标是可行域中的最优解,它使 达到最大值,解方程组 得点B的坐标为(9,2).
∴
这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为 ,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数 所确定的直线 的斜率 有关.就这个例子而言,当 的斜率为负数时,即 时,若 (直线 的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当 时,点C处使z取得最大值(比如: 时),若 ,可请同学思考.
随堂练习
1.求 的最小值,使式中的 满足约束条件
2.求 的最大值,使式中 满足约束条件
答案:1. 时, .
2. 时, .
总结提炼
1.线性规划的概念.
2.线性规划的问题解法.
布置作业
1.求 的最大值,使式中的 满足条件
2.求 的最小值,使 满足下列条件
答案:1.
2.在可行域内整点中,点(5,2)使z最小,