国家课程标准专辑数学课程标准3
第三部分 内容标准
本部分分别阐述各个学段中"数与代数""空间与图形""统计与概率""实践与综合应用"四个领域的内容标准。
"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
"空间与图形"的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
"统计与概率"主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
"实践与综合应用"将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对"数与代数""空间与图形""统计与概率"内容的理解,体会各部分内容之间的联系。
内容结构表
学段 第一学段(1~3年级) 第二学段(4~6年级) 第三学段(7~9年级)
数与代数 ●数的认识
●数的运算
●常见的量
●探索规律
●数的认识
●数的运算
●式与方程
●探索规律
●数与式
●方程与不等式
●函数
空间与图形 ●图形的认识
●测量
●图形与变换
●图形与位置
●图形的认识
●测量
●图形与变换
●图形与位置
●图形的认识
●图形与变换
●图形与坐标
●图形与证明
统计与概率 ●数据统计活动初步
●不确定现象
●简单数据统计过程
●可能性
●统计
●概率
实践与综合应用 ●实践活动 ●综合应用 ●课题学习
第一学段(1~3年级)
一、数与代数
在本学段中,学生将学习万以内的数、简单的分数和小数、常见的量,体会数和运算的意义,掌握数的基本运算,探索并理解简单的数量关系。
在教学中,要引导学生联系自己身边具体、有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用,
初步建立数感;应重视口算,加强估算,提倡算法多样化;应减少单纯的技能性训练,避免繁杂计算和程式化地叙述"算理"。 (一) 具体目标
1.数的认识
(1)能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置。
(2)认识符号<,=,>的含义,能够用符号和词语来描述万以内数的大小。[参见例1]
(3)能说出各数位的名称,识别各数位上数字的意义。
(4)结合现实素材感受大数的意义,并能进行估计。[参见例2和例3]
(5)能结合具体情境初步理解分数的意义,能认、读、写小数和简单的分数。
(6)能运用数表示日常生活中的一些事物,并进行交流。[参见例4]
2.数的运算
(1)结合具体情境,体会四则运算的意义。【1】
【1】关于乘法:3个5,可以写作3×
5,也可以写作5×3。3×5读作3乘5 ,3和5都是乘数(也可以叫因数)。关于除法:不给出"第一种分法""第二种分法"等名称。
(2)能熟练地口算20以内的加减法和表内乘除法,会口算百以内的加减法。
(3)能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
(4)会计算同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
(5)能结合具体情境进行估算,并解释估算的过程。[参见例5]
(6)经历与他人交流各自算法的过程。
(7)能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。[参见例6]
3.常见的量
(1)在现实情境中,认识元、角、分,并了解它们之间的关系。
(2)能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短。[参见例7]
(3)认识年、月、日,了解它们之间的关系。
(4)在具体生活情境中,感受并认识克、千克、吨,并能进行简单的换算。
(5)结合生活实际,解决与常见的量有关的简单问题。
4.探索规律
发现给定的事物中隐含的简单规律。[参见例8]
(二)案例
例1 对于50,98
,38,10,51这些数,请用大一些、小一些、大得多、小得多等语言描述它们之间的大小关系;并用">"或"<"表示它们的大小关系。
例2 1200张纸大约有多厚?1200名学生大约能组成多少个班级?1200步大约有多长?
例3 估计一张报纸一个版面的字数。
说明 如将报纸的一个版面折成若干等份,通过其中一份的字数来估计整个版面的字数。
例4 请你说出与日常生活密切相关的一些数及其作用。
说明 如学号、班级号、鞋号、体重、身高等。
例5 如果公园的门票每张8元,某校组织97名同学去公园玩,带800元钱够不够?
例6 每条小船限乘4人,17人需要租几条船?你认为怎样分配才合适?
例7 估计每分脉搏跳动的次数、阅读的字数、跳绳的次数、走路的步数。
例8 在下列横线上填上合适的图形或数字,并说明理由:
二、空间与图形
在本学段中,学生将认识简单几何体和平面图形,感受平移、旋转、对称现象,学习描述物体相对位置的一些方法,进行简单的测量活动,建立初步的空间观念。
在教学中,应注重所学知识与日常生活的密切联系;应注重使学生在观察、操作等活动中,获得对简单几何体和平面图形的直观经验。
(一)具体
目标
1.图形的认识
(1)通过实物和模型辨认长方体、正方体、圆柱和球等立体图形。
(2)辨认从正面、侧面、上面观察到的简单物体的形状。[参见例1]
(3)辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
(4)通过观察、操作,能用自己的语言描述长方形、正方形的特征。
(5)会用长方形、正方形、三角形、平行四边形或圆拼图。
(6)结合生活情境认识角,会辨认直角、锐角和钝角。
(7)能对简单几何体和图形进行分类。
2.测量
(1)结合生活实际,经历用不同方式测量物体长度的过程;在测量活动中,体会建立统一度量单位的重要性。
(2)在实践活动中,体会千米、米、厘米的含义,知道分米、毫米,会进行简单的单位换算,会恰当地选择长度单位。[参见例2]
(3)能估计一些物体的长度,并进行测量。
(4)指出并能测量具体图形的周长,探索并掌握长方形、正方形的周长公式。[参见例3]
(5)结合实例认识面积的含义,能用自选单位估计和测量图形的面积,体会并认识面积单位(厘米2、米2、千米2、公顷),会进行简单的单位换算。[参见例4]
(6)探索并掌握长方形、正方
形的面积公式,能估计给定的长方形、正方形的面积。
3.图形与变换
(1)结合实例,感知平移、旋转、对称现象。[参见例5]
(2)能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
(3)通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。
4.图形与位置
(1)会用上、下、左、右、前、后描述物体的相对位置。
(2)在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。
(二)案例
例1 桌上放着一个茶壶,四位同学从各自的方向进行观察。
请指出下面四幅图分别是哪位同学看到的。
例2 1米约相当于 根铅笔长;北京 到南京的铁路长约 1000 。
例3 测量一个不规则图形(如一片树叶)的周长。
例4 用一张正方形的纸作单位测量课桌面的面积。
例5 在下列现象中,哪些是平移或旋转现象?
(1)方向盘的转动; (2)水龙头开关的转动;
(3)电梯的上下移动; (4)钟摆的运动。
三、统计与概率
在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。
在教学中,应注重借助日常生活中的例子,让学生经历简单的数据统计过程;应注重对不确定性和可能性的直观感受。
(一)具体目标
1.数据统计活动初步
(1)能按照给定的标准或选择某个标准(如数量、形状、颜色)对物体进行比较、排列和分类;在比较、排列、分类的活动中,体验活动结果在同一标准下的一致性、不同标准下的多样性。
(2)对数据的收集、整理、描述和分析过程有所体验。
(3)通过实例,认识统计表和象形统计图、条形统计图(1格代表1个单位),并完成相应的图表。
(4)能根据简单的问题,使用适当的方法(如计数、测量、实验等)收集数据,并将数据记录在统计表中。[参见例1]
(5)通过丰富的实例,了解平均数的意义,会求简单数据的平均数(结果为整数)。
(6)知道可以从报刊、杂志、电视等媒体中获取数据信息。
(7)根据统计图表中的数据提出并回答简单的问题,能和同伴交换自己的想法。
2.不确定
现象
(1)初步体验有些事件的发生是确定的,有些则是不确定的。[参见例2]
(2)能够列出简单试验所有可能发生的结果。
(3)知道事件发生的可能性是有大小的。[参见例3]
(4)对一些简单事件发生的可能性作出描述,并和同伴交换想法。[参见例4]
(二) 案例
例1 调查一下你跑步后脉搏跳动会比静止时快多少,并将测得的数据记录下来,与同伴进行交流。
例2 下列现象中,哪些是确定的?
(1) 下周三本地下雨; (2)明天有人走路。
例3 随意从放有4个红球和1个黑球的口袋中,摸出一个球,摸到红球的可能性与摸到黑球的可能性哪个大?
例4 用"一定" "经常" "偶尔" "不可能" 等词语来描述生活中一些事件发生的可能性。
四、实践活动
在本学段中,学生通过实践活动,初步获得一些数学活动的经验,了解数学在日常生活中的简单应用,初步学会与他人合作交流,获得积极的数学学习情感。
教学时,应首先关注学生参与活动的情况,引导学生积极思考、主动与同伴合作、积极与他人交流,使学生增进运用数学解决简单实际问题的信心,同时意识到自己在集体中的作用。
(一) 具体目标
1. 经历观察、操作、实验、调查、推理等实践活动;在合作与交流的过程中,获得良好的情感体验。
2. 获得一些初步的数学实践活动经验,能够运用所学的知识和方法解决简单问题。
3. 感受数学在日常生活中的作用。
(二)案例
例 某班要去当地三个景点游览,时间为8:00~16:00。请你设计一个游览计划,包括时间安排、费用、路线等。
说明 学生在解决这个问题的过程中,将从事以下活动:
①了解有关信息,包括景点之间的路线图及乘车所需时间、车型与租车费用、同学喜爱的食品和游览时需要的物品等;
②借助数、图形、统计图表等表述有关信息;
③计算乘车所需的总时间、每个景点的游览时间、所需的总费用、每个同学需要交纳的费用等;
④分小
组设计游览计划,并进行交流。
通过解决这个问题,学生可以提高收集、整理信息的能力,养成与人合作的意识。
第二学段(4~6年级)
一、数与代数
在本学段中,学生将进一步学习整数、分数、小数和百分数及其有关运算,进一步发展数感;初步了解负数和方程;开始借助计算器进行复杂计算和探索数学问题;获得解决现实生活中简单问题的能力。
教学时,应通过解决实际问题进一步培养学生的数感,增进学生对运算意义的理解;应重视口算,加强估算,鼓励算法多样化;应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程;应避免繁杂的运算,避免将运算与应用割裂开来,避免对应用题进行机械的程式化训练。
(一)具体目标
1.数的认识
(1)在具体的情境中,认、读、写亿以内的数,了解十进制计数法,会用万、亿为单位表示大数。
(2)进一步认识小数和分数,认识百分数;探索小数、分数和百分数之间的关系,并会进行转化(不包括将循环小数化为分数)。
(3)会比较小数、分数和百分数的大小。
(4)在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。
(5)结合现实情境感
受大数的意义,并能进行估计。[参见例1]
(6)进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流。[参见例2和例3]
(7)在1~100的自然数中,能找出10以内某个自然数的所有倍数,并知道2,3,5的倍数的特征,能找出10以内两个自然数的公倍数和最小公倍数。
(8)在1~100的自然数中,能找出某个自然数的所有因数,能找出两个自然数的公因数和最大公因数。
(9)知道整数、奇数、偶数、质数、合数。
2.数的运算
(1)会口算百以内一位数乘、除两位数。
(2)能笔算三位数乘两位数的乘法,三位数除以两位数的除法。
(3)能结合现实素材理解运算顺序,并进行简单的整数四则混合运算(以两步为主,不超过三步)。
(4)探索和理解运算律,能应用运算律进行一些简便运算。
(5)在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
(6)会分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步)。
(7)会解决有关小数、分数和百分数的简单实际问题。
(8)在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯
。[参见例4至例6]
(9)能借助计算器进行较复杂的运算,解决简单的实际问题,探索简单的数学规律。[参见例7]
3.式与方程
(1)在具体情境中会用字母表示数。
(2)会用方程表示简单情境中的等量关系。
(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。
4.正比例、反比例
(1)在实际情境中理解什么是按比例分配,并能解决简单的问题。
(2)通过具体问题认识成正比例、反比例的量。
(3)能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。[参见例8]
(4)能找出生活中成正比例和成反比例量的实例,并进行交流。
5.探索规律
探求给定事物中隐含的规律或变化趋势。[参见例9和例10]
(三)案例
例1 一个正常人心跳100万次大约需要多长时间?100万小时相当于多少年?100万张纸有多厚?
例2 某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;9713321表示"1997年入学的一年级三班的32号同学,该同学是男生"。那么,9532012表示的学生是哪一年入学 的?几年级几班的?学号是多少?是男生还是女生? 例3 你是否喜欢数学?如果用5,4,3,2,1分别代表从最喜欢到最不喜欢之间的5种程度,你选哪个数?说明理由。如果小明选择2,说明什么?如果小立比较喜欢数学,他最可能 选几?
例4 李阿姨想买2袋米(每袋354元)、148元的牛肉、67元的蔬菜和128元的鱼。李阿姨带了100元,够吗?
例5 92×71的结果大约是多少?1 2+47的结果比1大吗?
例6 估测一粒花生的质量。
说明 可以通过称50粒花生的质量进行估测,也可以通过数100克花生的粒数进行估测。
例7 任意给定四个互不相同的数字,组成最大数和最小数,并用最大数减去最小数。对所得结果的四个数字重复上述过程,你会发现什么呢?(利用计算器)
例8 彩带每米售价4元,购买2米、3米、……彩带分别需要多少钱?
填一填:
长度/米 0 1 2 3 4 5 6 7 ......
价钱/元 0 4
把上表中长度和价钱所对应的点描在坐标纸上,再顺次连接起来,并回答下列问题:
a.所描的点是否在一条直线上?
b.估计一下买15米的彩带大约要花多少元?
c.小刚买的彩带的长度是小红的3倍,他所花的钱是小红的几倍?
例9 完成序列,并说明理由。
05, 15, 45,——。
例10 联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室。你知道第16个气球是什么颜色吗?
说明 解决这个问题,学生可以有多种方法。如,用A表示红气球,B表示黄气球,C表示绿气球,则按照题意可以写成AAABBCAAABBC…,从而找出第16个字母,并推出第16个气球的颜色。
二、空间与图形
在本学段中,学生将了解一些简单几何体和平面图形的基本特征,进一步学习图形变换和确定物体位置的方法,发展空间观念。
在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换;应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
(一)具体目标
1.图形的认识
(1)了解两点确定一条直线和两条相交直线确定一个点。
(2)能区分直线、线段和射线。
(3)体会两点间所有连线中线段最短,知道两点间的距离。
(4)知道周角、平角的概念及周角、平角、钝角、直角、锐角之间的大小关系。
(5)结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
(6)通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆。
(7)认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
(8)认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
(9)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(10)能辨认从不同方位看到的物体的形状和相对位置。[参见例1]
2.测量
(1)会用量角器量指定角的度数,会画指定度数的角,会用三角尺画30°,45°,60°,90°角。
(2)利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。
(3)探索并掌握圆的周长和面积公式。
(4)能用方格纸估计不规则图形的面积。[参见例2]
(5)通过实例,了解
体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),会进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
(6)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。
(7)探索某些实物体积的测量方法。[参见例3]
3.图形与变换
(1)用折纸等方法确定轴对称图形的对称轴,能在方格纸上画出一个图形的轴对称图形。
(2)能利用方格纸等形式按一定比例将简单图形放大或缩小,体会图形的相似。
(3)通过观察实例,认识图形的平移与旋转,能在方格纸上将简单图形平移或旋转90°。[参见例4]
(4)欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。
4.图形与位置
(1)了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
(2)能根据方向和距离确定物体的位置。[参见例5]
(3)能描述简单的路线图。[参见例6]
(4)在具体情境中,能用数对来表示位置,并能在方格纸上用数对确定位置。[参见例7]
(二)案例
例1下面是一组立方块:
例2下图每个小方格为1个平方单位,试估计曲线所围部分的面积。
例5假设大门在教室的正南方向50米处,图书馆在教室北偏东60°方向的100米处。试画出示意图。
例6画出从学校到家的路线示意图,并注明方向及主要参照物。
例7小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当怎样表示?
三、统计与概率
在本学段中,学生将经历简单的数据统计过程,进一步学习收集、整理和描述数据的方法,并根据数据分析的结果作出简单的判断与预测;将进一步体会事件发生可能性的含义,并能计算一些简单事件发生的可能性。
在教学中,应注重所学内容与现实生活的密切联系;应注重使学生有意识地经历简单的数据统计过程,根据数据作出简单的判断与预测,并进行交流;应注重在具体情境中对可能性的体验;应避免单纯的统计量的计算。
(一)具体目标
1.简单数据统计过程
(1)经历简单的收集、整理、描述和分析数据的过程(必要时可使用计算器)。
(2)根据实际问题设计简单的调查表。
(3)通过实例,进一步认识条形统计图(1格表示多个单位),认识折线统计图、扇形统计图;根据需要,选择条形统计图、折线统计图直观、有效地表示数据。
(4)通过丰富的实例,理解平均数、中位数、众数的意义,会求数据的平均数、中位数、众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。[参见例1和例2]
(5)能从报刊杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。[参见例3
]
(6)能设计统计活动,检验某些预测。[参见例4]
(7)能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
(8)初步体会数据可能产生误导。[参见例5]
2.可能性
(1)体验事件发生的等可能性以及游戏规则的公平性,会求一些简单事件发生的可能性。
(2)能设计一个方案,符合指定的要求。[参见例6]
(3)对简单事件发生的可能性作出预测,并阐述自己的理由。[参见例7]
(二)案例
例1小明所在班级的学生平均身高是1.4米,小强所在班级的学生平均身高是1.5米。小明一定比小强矮吗?
例2选择适当的统计量来表示我们班同学最喜爱的颜色。
例3在《中国日报》1999年10月1日的国庆专刊上,刊登了有关中国城市建设在建国50年来的发展情况,下面摘录了一则中国城市数量统计图。你从这个统计图中获得了哪些信息?并和同学交流。
中国城市数量统计图
例4估计你们班所有同学的家庭一个月内共丢弃多少个塑料袋,通过实际调查验证你的估计。
例5某公司有15名职工,对外招聘时称该公司职工的月平均工资超过1200元。请分析下面的统计表,你怎样看待该公司公布的这个数?
职 务 经 理 副经理 职 员
人 数/人 1 2 13
月工资/元 5000 2000 800
例6在一个正方体的6个面上分别标上数字,使得"2"朝上的可能性为13。
说明这个正方体的6个面上的数字可以分别为1,2,2,3,4,5。
例7调查两支球队以往比赛的胜负情况,预测下场比赛谁获胜的可能性大,并说明自己的理由。
四、综合应用
在本学段中,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法,并能与他人进行合作交流。
教学时,应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。
(一)具体目标
1.有综合运用数与运算、空间与图形、统计与概率等相关知识解决一些简单实际问题的成功体验,初步树立运用数学解决问题的自信心。
2.获得综合运用所学知识解决简单实际问题的活动经验和方法。
3.初步感受数学知识间的相互联系,体会数学的作用。
(二)案例
例1设计合适的包装方式。
(1)现有4盒磁带,有几种包装方式?哪种方式更省包装纸?(重叠处忽略不计)
(2)若有8盒磁带,哪种方式更省包装纸?(重叠处
忽略不计)
说明这是生活中常见的问题,通过解决这类问题可以培养学生综合运用所学知识解决实际问题的能力。
例2上海的电视塔有多高?北京的电视塔有多高?它们的高度大约分别相当于几个教室的高度?分别相当于多少个学生手拉手的长度?还有什么样的办法可以形象地描述电视塔的高度?
说明这个问题可以加深学生对大数的感知与认识,进一步发展数感。同时,学生还能学习如何通过询问、查阅资料等调查方式来收集数据。
第三学段(7~9年级)
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。
(一)具体目标
1.数与式
(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。
④理解有理数的运算律,并能运用运算律简化运算。
⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1]
(2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。
④能用有理数估计一个无理数的大致范围。[参见例2]
⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。
(3)代数式
①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4]
③能解释一些简单代数式的实际背景或几何意义。[参见例5]
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。
②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6]
2.方程与不等式
(1)方程与方程组
①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个) 。
④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。
⑤能根据具体问题的实际意义,检验结果是否合理。
(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。
3.函数
(1)探索具体问题中的数量关系和变化规律[参见例8]
(2)函数
①通过简单实例,了解常量、变量的意义。
②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。
③能结合图像对简单实际问题中的函数关系进行分析。[参见例9]
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。
⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10]
⑥结合对函
数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11]
(3)一次函数
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况=。
③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题。
(4)反比例函数
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
②能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。
③能用反比例函数解决某些实际问题。
(5)二次函数
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
(二)案例
例1一次水灾
中,大约有20万人的生活受到影响,灾情将持续一个月。请推断:大约需要组织多少顶帐篷?多少吨粮食?
说明假如平均一个家庭有4口人,那么20万人需要5万顶帐篷;假如一个人平均一天需要05千克的粮食,那么一天需要10万千克的粮食……
例2估计(√5-1)/2与0.5哪个大
例3在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:记录蟋蟀每分叫的次数,用这个次数除以7,然后再加上3,就得到当时的温度。温度(℃)与蟋蟀每分叫的次数之间的关系是:温度=蟋蟀每分叫的次数÷7+3。试用字母表示这一关系。
例4观察下列图形并填表:
梯形个数 1 2 3 4 5 6 ...... n
周 长 5 8 11 14 ......
例5对代数式3a作出解释。
说明如葡萄的价格是3元/千克,买a千克的葡萄需3a元;或正三角形的边长为a,这个三角形的周长是3a。
例6化简:(1)(x2-4x+4)/x2-4;(2)(x-2)/(x+2)+(x+2)/(x-2)
例7估计下列方程的解:
(1)x3-9=0;(2)x2+2x-10=0。
例85名同学参加乒乓球赛,每两名同学之间赛一场,一共需要多少场比赛?10名同学呢?
说明可以用列举、画图等方法。
例9小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回。父亲看了10分报纸后,用了15分返回家。下面的图形中哪一个表示父亲离家的时间与距离之间的关系?哪一个表示母亲离家的时间与距离之间的关系?
例10某书定价8元,如果购买10本以上、超过10本的部分打八折。试分析并表达出购书数量与付款金额之间的关系。
例11填表并观察下列两个函数的变化情况:
x 1 2 3 4 5 ......
y1=50+x
y2=5x
(1)在同一个直角坐标系中画出上面两个函数的图象,比较它们有什么不同;
(2)当x从1开始增大时,预测哪一个函数的值先到达100。
二、空间与图形
在本学段中,学生将探索基本图形(直线形、圆)的基本性质及其相互关系,进一步丰富对空间图形的认识和感受,学习平移、旋转、对称的基本性质,欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法,发展空间观念。
推理与论证的学习从以下几个方面展开:在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理地思考与表达;在积累了一定的活动经验与掌握了一定的图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。
在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧。证明的要求控制在《标准》所规定的范围内。
(一)具体目标
1.图形的认识
(1)点、线、面
通过丰富的实例,进一步认识点、线、面(如交通
图上用点表示城市,屏幕上的画面是由点组成的)。
(2)角
①通过丰富的实例,进一步认识角。
②会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
③了解角平分线及其性质【1】
(3)相交线与平行线
注【1】角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上。
①了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。
②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。
③知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
④了解线段垂直平分线及其性质【1】。
⑤知道两直线平行同位角相等,进一步探索平行线的性质。
⑥知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
⑦体会两条平行线之间距离的意义,会度量两条平行线之间的距离。
(4)三角形
①了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳
定性。
②探索并掌握三角形中位线的性质。
③了解全等三角形的概念,探索并掌握两个三角形全等的条件。
④了解等腰三角形的有关概念,探索并掌握等腰三角形的性质【2】和一个三角形是等腰三角形的条件[3];了解等边三角形的概念并探索其性质。
⑤了解直角三角形的概念,探索并掌握直角三角形的性质[4]和一个三角形是直角三角形的条件[5]
⑥体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。
(5)四边形
①探索并了解多边形的内角和与外角和公式,了解正多边形的概念。
②掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
注
【1】线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线上。
【2】等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一。
[3]有两个角相等的三角形是等腰三角形。
[4]直角三角形的两锐角互余,斜边上的中线等于斜边一半。
[5]有两个角互余的三角形是直角三角形。
③探索并掌握平行四边形的有关性质[1]
和四边形是平行四边形的条件[2]。
④探索并掌握矩形、菱形、正方形的有关性质[3]和四边形是矩形、菱形、正方形的条件[4]。
⑤探索并了解等腰梯形的有关性质[5]和四边形是等腰梯形的条件。[6]
⑥探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木 重心)。
⑦通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
(6)圆
①理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆以及圆与圆的位置关系。
②探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。
③了解三角形的内心和外心。
④了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
⑤会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
(7)尺规作图
①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及
其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③探索如何过一点、两点和不在同一直线上的三点作圆。
④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。
(8)视图与投影
①会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
②了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。
③了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
注:
[1]平行四边形的对边相等、对角相等、对角线互相平分。
[2]一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形。
[3]矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直平分。
[4]三个角是直角的四边形,或对角线相等的平行四边形是矩形;四边相等的四边形,或对角线互相垂直的平行四边形是菱形。
[5]等腰梯形同一底上的两底角相等,两条对角线相等。
[6
]同一底上的两底角相等的梯形是等腰梯形。
④观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
⑤通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。
⑥了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
⑦通过实例了解中心投影和平行投影。
2.图形与变换
(1)图形的轴对称
①通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
②能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。[参见例1]
③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。
④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。
(2)图形的平移
①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。
②能按要求作出简单平面图
形平移后的图形。
③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。
(3)图形的旋转
①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
②了解平行四边形、圆是中心对称图形。
③能够按要求作出简单平面图形旋转后的图形。
④欣赏旋转在现实生活中的应用。
⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。[参见例2和例3]
⑥灵活运用轴对称、平移和旋转的组合进行图案设计。
(4)图形的相似
①了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。
②通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。
③了解两个三角形相似的概念,探索两个三角形相似的条件。
④了解图形的位似,能够利用位似将一个图形放大或缩小。
⑤通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。
⑥通过实例认识锐角三角函数(sinA,co
sA,tanA),知道30°,45°,60°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。
⑦运用三角函数解决与直角三角形有关的简单实际问题。
3.图形与坐标
(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。[参见例4]
(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。[参见例5]
(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。[参见例6]
(4)灵活运用不同的方式确定物体的位置。[参见例7]
4.图形与证明
(1)了解证明的含义
①理解证明的必要性。
②通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。
③结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。
④通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的。
⑤通过实例,体会反证法的含义。
⑥掌握用综合法证明的格式,体会证明的过程要步步有据。
(2)掌握以下基本事实,作为证明的依据
①
一条直线截两条平行直线所得的同位角相等。
②两条直线被第三条直线所截,若同位角相等,那么这两条直线平行。
③若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等。
④全等三角形的对应边、对应角分别相等。
(3)利用(2)中的基本事实证明下列命题[1]1
①平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。
②三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。
③直角三角形全等的判定定理。
④角平分线性质定理及逆定理;
三角形的三条角平分线交于一点(内心)。
⑤垂直平分线性质定理及逆定理;
三角形的三边的垂直平分线交于一点(外心)。
⑥三角形中位线定理。
⑦等腰三角形、等边三角形、直角三角形的性质和判定定理。
⑧平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。
(4)通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值
(二)案例
例1以树干为对称轴,画出树的另
一半。
例2请说出下面乙树是怎样由甲树变换得到的。
例3观察下面的图案,它可以看成是由哪个图形经过怎样的变换产生的?
例4在坐标系中描出下列各点,并将各组的点顺次连接起来:
①(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);
②(1,3),(2,2),(4,2),(5,3);
③(1,4),(2,4),(2,5),(1,5),(1,4);
④(4,4),(5,4),(5,5),(4,5),(4,4);
⑤(3,3)。
观察这个图形,你觉得它像什么?
例5下图是某市旅游景点的示意图。试建立直角坐标系,用坐标表示各个景点的位置:
例6如图所示,在直角坐标系下,图1中的图案"A"经过变换分别变成图2至图6中的相应图案(虚线对应于原图案),试写出图2至图6中各顶点的坐标,探索每次变换前后图案发生了什么变化、对应点的坐标之间有什么关系。
例7张坚在某市动物园的大门口看到这个动物园的平面示意图(如下图)。试借助刻度尺、量角器解决如下问题:
(1)建立适当的直角坐标系,用坐标表示猴山、驼峰、百鸟园的位置;
(2)填空:
百鸟园在大门的北偏东度的方向上,到大门的图上距离约为 厘米;
熊猫馆在大门的北偏度的方向上,到大门的图上距离约为 厘米;
驼峰在大门的南偏度的方向上,到大门的图上距离约为 厘米。
说明本题旨在让学生体会除用直角坐标系描述物体的位置外,还可以选定某个参照物和某个方向,用距离和角度来刻画物体的位置。
三、统计与概率
在本学段中,学生将体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率。
在教学中,应注重所学内容与日常生活、自然、社会和科学技术领域的联系,使学生体会统计与概率对制定决策的重要作用;应注重使学生从事数据处理的全过程,根据统计结果作出合理的判断;应注重使学生在具体情境中体会概率的意义;应加强统计与概率之间的联系;应避免将这部分内容的学习变成数字运算的练习,对有关术语不要求进行严格表述。
(一)具体目标
1.统计
(1)从事收集、整理、描述和分析数据的活动,能用计算器处理较为复杂的统计数据。
(2)通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果。[参见例1]
(3)会用扇形统计图表示数据。
(4)在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度。
(5)探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度。[参见例2]
(6)通过实例,理解频数、频率的概念,了解频数分布的意
义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。
(7)通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。
(8)根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。
(9)能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法。
(10)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。[参见例3]
2.概率
(1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。[参见例4和例5]
(2)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。[参见例6]
(3)通过实例进一步丰富对概率的认识,并能解决一些实际问题。[参见例7]
(二)案例
例1电视台需要在本市调查某节目的收视率,每个看电视的人都要被问到吗?对一所大学学生的调查结果能否作为该节目的收视率?你认为对不同社区、年龄层次、文化背景的人所做的调查结果会一样吗?
例2下面是两个水果店1至6月份的销售情
况(单位:千克),比较两个水果店销售量的稳定性。
1月 2月 3月 4月 5月 6月
甲商店 450 440 480 420 580 550
乙商店 480 440 470 490 520 520
例3统计某商店一个月内几种商品的销售情况,对这个商店的进货提出你的建议。
例4一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,求两次都摸到红球的概率。
例5如图转动转盘,求转盘停止转动时指针指向阴影部分的概率。
例6通过实验获得图钉从一定高度落下后钉尖着地的频率。
例7一个游戏的中奖率是1%,买100张奖券,一定会中奖吗?
四、课题学习
在本学段中,学生将探讨一些具有挑战性的研究课题,发展应用数学知识解决问题的意识和能力;同时,进一步加深对相关数学知识的理解,认识数学知识之间的联系。
在前两个学段的基础上,教学时应引导学生结合生活经验提出课题、积极地思考所面临的课题、清楚地表达自己的观点并能够解决一些问题。
(一)具体目标
1.经历"问题情境-建立模型-求解-解释与应用"的基本过程。
2.体验数学知识之间的内在联系,初步形成对数学整体性的认识。
3.获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。
4.通过获得成功的体验和克服困难的经历,增进应用数学的自信心。
(二)案例
例用一张正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?
说明这是一个综合性的问题,学生可能会从以下几个方面进行思考:①无盖长方体展开后是什么样?②用一张正方形的纸怎样才能制作一个无盖长方体?基本的操作步骤是什么?③制成的无盖长方体的体积应当怎样去表达?④什么情况下无盖长方体的体积会较大?⑤如果是用一张正方形的纸制作一个有盖的长方体,怎样去制作?制作过程中的主要困难可能是什么?
通过这个主题的学习,学生进一步丰富自己的空间观念,体会函数思想以及符号表示在实际问题中的应用,进而体验从实际问题抽象出数学问题、建立数学模型、综合应用已有的知识解决问题的过程,并从中加深对相关知识的理解、发展自己的思维能力。
相关文章:
|