http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 全国2015年高考预测金卷安徽卷数学理试题
文件大小 238KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-6-24 7:52:18
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

2015年高考预测金卷(安徽卷)理科数学

第I卷(选择题,共50分)

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数,则化简复数的结果是

A.

B.

C.

D.



2.已知p:α是第二象限角,q:sinα > cosα,则p是q的

A.充分不必要条件

B.必要不充分条件



C.充要条件

D.既不充分也不必要条件



3.如图,若程序框图输出的S是126,则判断框①中应为?

A.

B.



C.

D.



4.若直线被圆截得的弦长为4,则的最小值为

A.

B.

C.2

D.4



5.已知约束条件,若目标函数恰好在点处取得最大值,则a的取值范围是

A.

B.

C.

D.



6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零部件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切掉部分的体积与原来毛坯体积的比值为

A.

B.



C.

D.



7.函数的定义域为,值域为,则m的取值范围是

A.

B.

C.

D.



8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加。当甲乙同时参加时,他们两人的发言不能相邻。那么不同的发言顺序的种数为

A.360

B.520

C.600

D.720



9.已知,,且,点P在线段P1P2的延长线上,则P点的坐标为

A.

B.

C.

D.



10.设函数的定义域是,其图象如图,那么不等式的解集为

A.

B. 

C.

D. 

第II卷(非选择题,共100分)

二、填空题:本大题共5小题,每小题5分,共25分。把答案写在题中横线上。

11.二项式的展开式中,含x4的项的系数为__________。

12.给出下列命题:

①角α的终边与单位圆交于点P,过点P作x轴的垂线,垂足为M,则;

②存在,使;

③将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度,得到的函数关于成中心对称;

④与在区间上有且只有一个公共点。

其中错误的命题为__________。(把所有符合要求的命题序号都填上)

13.由曲线,直线,直线围成的封闭图形的面积为__________。

14.Sn是等比数列的前n项和,a1 =,9S3 = S6,设Tn = a1 a2 a3 …an,则使Tn取最小值的n值为__________。

15.存在两条直线与双曲线相交于四点A,B, C,D,且四边形ABCD为正方形,则双曲线的离心率的取值范围为__________。

三、解答题:本大题共6小题,共75分。解答应写出必要的文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在ΔABC中,角A、B、C所对的边分别为a,b,c,且,,。

(1)求的值;

(2)求ΔABC的面积。

17.(本小题满分12分)

已知数列的首项为a1 = 1,前n项和为Sn,并且对于任意的n ≥ 2,3Sn - 4、an、总成等差数列。

(1)求的通项公式;

(2)记数列的前n项和为Tn,求Tn。

18.(本小题满分12分)

某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16)。现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图。

(1)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(2)求这50名男生身高在172 cm以上(含172 cm)的人数;

(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望。

参考数据:若,则

,

,

。

19.(本小题满分12分)

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA = AB = BC = 2,AD = 1。M是棱SB的中点.

(1)求证:AM∥面SCD;

(2)求面SCD与面SAB所成二面角的余弦值;

(3)设点N是直线CD上的动点,MN与面SAB所成的角为θ,求sinθ的最大值。

20.(本小题满分12分)

已知椭圆的离心率,且经过点,抛物线的焦点F与椭圆C1的一个焦点重合。

(1)过F的直线与抛物线C2交于M、N两点,过M、N分别作抛物线C2的切线l1、l2,求直线l1、l2的交点Q的轨迹方程;

(2)从圆O:x2 + y2 = 5上任意一点P作椭圆C2的两条切线,切点分别为A、B,试问∠APB的大小是否为定值,若是定值,求出这个定值;若不是定值,请说明理由。

21.(本小题满分12分)

已知函数。

(1)当时,求在区间上的最大值和最小值;

(2)如果函数,,,在公共定义域D上,满足,那么就称为,的“活动函数”。

已知函数,。若在区间上,函数是,的“活动函数”,求a的取值范围。

理科数学参考答案

一、选择题

题号

1

2

3

4

5

6

7

8

9

10



答案

B

A

B

D

C

C

C

C

D

C



二、填空题

11.10

12.①②④

13.

14.5

16.



三、解答题

16.解:(1)   

(2) 



17.法一 解:依题意有,即

即,即,

所以是以为首项,以为公比的等比数列,

所以,所以

所以,

所以 

法二:可退位作差求得

(2)由(1)可知所以=

=.

18.(本小题满分12分)

解:(Ⅰ)由直方图,经过计算该校高三年级男生平均身高为

,

高于全市的平均值168(或者:经过计算该校高三年级男生平均身高为168.72,比较接近全市的平均值168). …………………………………………………………(4分)

(Ⅱ)由频率分布直方图知,后三组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×5=10,即这50名男生身高在172 cm以上(含172 cm)的人数为10人. ……………(6分)

(Ⅲ),

,0.0013×100 000=130.

所以,全市前130名的身高在180 cm以上,这50人中180 cm以上的有2人.

随机变量可取,于是

,,

. ………………………………(12分)

19.(本小题满分13分)

解:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,则

, ,,,,.

则.

设平面SCD的法向量是则

即

令,则,于是.

,.

AM∥平面SCD. ……………………………………………………(4分)

(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为,

则,即.

平面SCD与平面SAB所成二面角的余弦值为.………………………………(8分)

(Ⅲ)设,则.

又,面SAB的法向量为,

所以,.

.

当,即时,.………………………………………(13分)

20.解:(1)当时,,

;…………2分

对于,有,

∴在区间[1, e]上为增函数,…………3分

∴,. …………5分

(2)①在区间(1,+∞)上,函数是的“活动函数”,则

令<0,对恒成立,

且=<0对恒成立,

∵ …………7分

1)若,令,得极值点,,

当,即时,在(,+∞)上有,

此时在区间(,+∞)上是增函数,并且在该区间上有∈(,+∞),不合题意;…………9分

当,即时,同理可知,在区间(1,+∞)上,有

∈(,+∞),也不合题意;…………9分

2) 若,则有,此时在区间(1,+∞)上恒有,

从而在区间(1,+∞)上是减函数;要使在此区间上恒成立,只须满足,所以a.…………11分

又因为<0, 在(1, +∞)上为减函数,, …………12分

综合可知的范围是.…………13分

21.(1)由于椭圆的离心率e=,则,,则,椭圆的方程为将点代入椭圆的方程得到c=1,故所求椭圆的方程为其焦点坐标为,则F(0,1),故抛物线的方程为 ……3分

易知直线MN的斜率一定存在,设为k,则直线MN的方程为y=kx+1,代入抛物线的方程得到。设,则 ……4分

由于,故直线的斜率为,的方程为即,同理可得直线的方程为,令,即显然,故,即点Q的横坐标是,点Q的纵坐标是

,即点Q(2k,-1),故点Q的轨迹方程是y=-1 ……6分

(2)当这两条切线中有一条切线的斜率不存在时,根据对称性,不妨设点P在第一象限,则此时点P的横坐标为,代入圆O的方程得点P的纵坐标是,因此这两条切线所在的方程分别为因此,所以若角APB的大小为定值,则这个定值只能是(8分)

当这两条切线的斜率都存在时,设点P,过点P的切线的斜率为,则切线方程为 ,由于直线是椭圆的切线,故整理得: ……10分

设切线PA,PB的斜率分别为,则是上述方程的两个实根,故又点P在圆上,故所以,所以,……12分

综上可知,角APB的大小为定值,且这个定值为。……13分

::立即下载::
进入下载页面
下载出错
相关资源:
·全国2015年高考预测金卷安徽卷数学文试题
·全国2015年高考1卷考前模拟冲刺数学理试题
·全国2015年高考1卷考前模拟冲刺数学文试题
·全国2015年高校招生全国统一考试考前演练六数学理试题
·全国2015年高校招生全国统一考试考前演练六数学文试题
·全国2015年普通高等学校招生统一考试新课标五数学理试题
·全国2015年普通高等学校招生统一考试新课标五数学文试题
·全国2015年普通高等学校招生统一考试数学理试题
·全国2015年普通高等学校招生统一考试数学文试题
·全国2015年新课标湖南卷二高考仿真卷数学理试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号