第四节 流体压强与流速的关系
扩展资料
“香蕉球”的奥秘
如果你经常观看足球比赛的话,一定见过罚前场直接任意球.这时候,通常是防守方五六个球员在球门前组成一道“人墙”,挡住进球路线.进攻方的主罚队员,起脚一记劲射,球绕过了“人墙”,眼看要偏离球门飞出,却又沿弧线拐过弯来直入球门,让守门员措手不及,眼睁睁地看着球进了大门.这就是颇为神奇的“香蕉球”.
为什么足球会在空中沿弧线飞行呢?原来,罚“香蕉球”的时候,运动员并不是拔脚踢中足球的中心,而是稍稍偏向一侧,同时用脚背摩擦足球,使球在空气中前进的同时还不断地旋转.这时,一方面空气迎着球向后流动,另一方面,由于空气与球之间的摩擦,球周围的空气又会被带着一起旋转.这样,球一侧空气的流动速度加快,而另一侧空气的流动速度减慢.物理知识告诉我们:气体的流速越大,压强越小(伯努利方程).由于足球两侧空气的流动速度不一样,它们对足球所产生的压强也不一样,于是,足球在空气压力的作用下,被迫向空气流速大的一侧转弯了.
乒乓球中,运动员在削球或拉弧圈球时,球的线路会改变,道理与“香蕉球”一样.
扩展资料
乒乓球的上旋
邓亚萍和她的队友乔红在第43届世乒赛上的一场争夺战,真可谓是速度和力量的化身.她们凶猛地抽杀推挡,把个小球变成了一道道银色的电弧,直看得人们眼花缭乱,叹为观止.人们可曾知道,在她们不断加大攻球的速度和力量时,那一个个击出去的球都带着上旋?
乒乓球运动中的攻球,以快速和凶狠给对方造成很大的威胁.但是攻球往往会遇到这样的尴尬:挥拍过猛,球会不着台面飞出界外;如果因此而不适当地压低弧线高度,球又会触网失分.不解决这个准确落点的问题,所谓攻球的威胁也就成了水中月、镜中花了.那么有没有一种攻球,可以携裹着强劲的力量和速度杀向对方,又能缩短打出的距离、增加乒乓球飞行弧线的高度?有,这就是带上旋的攻球.
乒乓球的上旋,会使球体表面的空气形成一个环流,环流的方向与球的上旋方向一致.这时,球体还在向前飞行,所以它同时又受到了空气的阻力.环流在球体上部的方向与空气阻力相反,在球体下部的方向与空气阻力一致,所以,球体上部空气的流速慢,而下部空气的流速快.流速慢的压强大,流速快的压强小,这样就使球体得到了一个向下的力,这个力又让球得到了一个加速度.我们把球体向前上方的运动看作是这样两个运动的合成:一个是沿水平方向的匀速直线运动,另一个是竖直上抛运动,以此可得出相应的计算式.然后把具体数值代入计算式中,并把计算结果在座标中画出来,就会联结出一个具有一定弯曲度的弧线,这就是上旋,能增大乒乓球飞行弧线的弯曲程度,也就是被运动员用来增加保险系数的弧度.
上旋的利用,使得许多运动员如虎添翼.马文革在1994年世界明星巡回赛上速度加旋转,以2:0轻取1993年世界杯男单冠军普里莫拉茨,第2局的比分是21:6.在与法国盖亭争夺冠军的决赛中,又以3:1取胜.上旋的特性在弧圈球中表现得最为出色,因为弧圈球的上旋力非常强.法国埃卢瓦凌厉的两面弧圈技术,使他得以在乒坛上称霸一方.
扩展资料
帆船前行的原理
人们通常认为帆船只能沿风吹动的方向移动,即顺风移动. 但三角帆使帆船还能够迎着风移动(逆风移动). 在理解如何逆风移动之前,我们首先需要了解一些与船帆有关的知识.
船帆的最先着风之帆缘称作前缘,它位于船只的前部. 后部的船翼后缘称作帆的后缘. 从前缘到帆的后缘的假想水平线称作弦. 船帆的曲度称作吃水,并且从弦到最大吃水点的垂直距离称作弦深. 充满空气以形成凹面弯曲的船帆的一面称作迎风面.向外吹以形成凸起形状的一面称作背风面. 了解了这些术语后,我们将继续介绍帆船运动.
帆船部件和术语
船只借助帆的每一面所产生的力量沿着迎风方向移动. 迎风面的正向力量(推力)和背风面的负向力量(拉力)合在一起形成了合力,这两种力量都作用于同一方向. 尽管您可能不认同,但拉力确实是这两种力量中较强的力量.
在1738年,科学家丹尼尔·伯努利发现,气流速度与周围自由气流成比例增加,从而导致压力的降低,而这可令气流速度更快. 这种情况在帆的背风面发生即空气流动速度加快并在帆的后面形成低压区域.
作用于雨伞的伯努力原理
为什么空气会加速?空气与水一样,都是流动的. 当风汇聚并且风被帆分开时,一些风附着在凸起面(背风面)并将帆扯起. 为了其上“未附着”的空气穿过帆,帆必须向不受帆影响的气流外弯曲. 但此类的自由气流往往保持其直线流动并妨碍航行. 自由气流和弯曲的船帆合在一起形成了一个窄道,起初的气流必须从中经过. 因为它不能自行压缩,所以空气必须加速以从该窄道挤过. 这就是气流速度在帆的凸起面增加的原因.
一旦发生这一情况,伯努力的理论就得以生效. 窄道中增加的气流要快于周围的空气,并且在气流速度加快的区域压力将下降.这就产生了链式反应.随着新的气流接近最先着风之帆缘并分开,它更多地流向背风面——气流被吸引到低压区域并被高压区域所排斥. 现在即使更大块的空气也必须更快地挤进凸起帆面和自由气流形成的窄道,这令空气压力更低. 这一情况不断发展直至达到现有风力条件的最大速度,并且在背风面形成最大低压区域. 请注意,只有在气流达到曲面(弦深)的最深点后气流才增加. 在达到这一点之前,空气不断汇聚和加速. 超出这一点后,空气分开并减速,直到再次与周围空气速度相当.
帆周围的片状气流(帆与风之间保持最佳角度)
在其间,在帆的迎风面发生相反的情况. 随着更多的空气流过背风面,迎风面上流过帆的凸起面和自由气流之间的扩展空间的空气将减少.由于这些气流四散流动,所以其流速下降到比周围空气还低的速度,这导致压力增加.
由片状气流内的风帆产生的力量
在了解了这些潜在的力量之后,我们如何在实际中借助这些力量来使船只移动呢? 我们需要在风帆和风之间建立理想的关系,使风不但加速流动,而且可以沿着帆的凸起面流动. 船帆和风之间的这一关系的一部分称作迎角. 描绘与风平直的船帆. 空气均匀分开到每一面上 - 船帆下垂而不是充满成弯曲形状,空气没有加速以在背风面形成低压区域,并且船只没有移动. 但如果船帆与风向刚好成正确角度,则船帆会一下子充满风并产生空气动力.
迎角的角度必须十分精确. 如果该角度保持与风太近,则船帆的前部将“抢风”或摆动. 如果其角度太宽,则沿着帆的曲面流动的气流将分开并且周围的空气重新聚合. 这一分离产生了旋转空气的“停转区域”,导致风速下降、压力增加. 因为船帆的曲率将始终导致帆的尾端与风向所成的角度大于与最先着风之帆缘所成角度,所以帆的后缘的空气不能沿着曲面流动并返回周围自由空气的方向. 理想上讲,在气流到达帆的后缘前不应开始分离. 但随着船帆的迎角加宽,分离点逐渐前移并将其后的一切保留在停转区域.
迎角的影响
您可能看到,除了迎角保持正确角度以使空气能够顺利通过外,关于风与帆关系的另一重要因素就是船帆必须具有正确的曲率,以保证空气始终附着在船尾. 如果曲线太小,则气流将不弯曲,并且将不会产生导致速度增加的压挤效果. 如果曲线太大,则气流不能被附着. 因此,只有在曲率不太大并且迎角不太宽的情况下才能发生分离.
这样,我们现在就知道风帆压力是如何在理论上和实际中形成的. 但这些压力是如何令船只前行的呢? 让我们更深入地了解其中的奥妙.
在海平面上,每平方米的气压是 10 吨. 当船帆的背风面上的气流增强时,您从上文可以知道气压将下降. 假定每平方米将下降 20 千克. 同样,迎风面上的气压将增加 - 假定每平方米增加 10 千克(请记住,下拉压力强于推送压力). 并且即使背风压力是负向并且迎风压力是正向的,它们都作用于同一方向. 因此现在我们每平方米约有共 30 千克的压力. 将其乘以 10 平方米风帆大小,我们在该风帆上已产生了共 300 千克的合力.
船帆上的每一点都作用了不同的压力. 压力最强处位于弦深处,即船帆曲面最深处. 这也是气流最快和压力下降最大的地方. 随着气流向后移动并分离,力量也随之减弱.这些力量的方向也会更改.在船帆的每一点上,该力量与帆面保持垂直. 船帆前部的力量最强处也在最前方向上. 在船帆的中部,力量更改为侧方向,或倾斜方向.在船帆的后部,随着风速的下降力量也逐渐减弱,并导致向后方向或往后拉的方向.
船帆各处上的压力都可以计算出来,以便确定其每一面上前部、后部和牵引部位的相对力量. 因为向前的力量还是最强的,所以施加在船帆上的合力还稍偏向前的,但主要是侧方向. 增加船帆作用以获得更多向前的驱动力还导致侧向力的更大的增加. 因此,当风施加在侧面的力量达到最大时,船只是如何前行的呢? 这涉及船帆与风的迎角,还涉及船只与水的阻力问题.
在船只逆风航行时作用的力量
合力的方向与帆弦近乎垂直. 当帆弦与船只的中线平行时,主要力量几乎完全施加在侧面. 但是,如果船帆成一点儿角度,以便船帆产生的力量稍微向前,则船只本身会立即前行. 这是为什么呢? 船的中线(即龙骨)作用于水的方式类似于船帆作用于风的方式. 龙骨产生的力量与船帆倾斜力相反的力量 - 它使船完全保持船帆形成的力量的方向. 并且尽管风帆合力始终作用于迎风的那面,但正确的迎角将使船只前行.
船帆的角度距离船体中线越远,着力点施加于正面相对于施加于侧面的数量越多.将正向力量的稍微调整与水相对于空气的反向力量结合起来,我们将令船只迎风前行,因为现在水流的阻力最小.
扩展资料
飞机的组成部分与气动升力
一、飞机的组成部分
飞机一般是由机翼、机身和尾翼(包括水平安定面和垂直安定面)组成的.如其名所述,这些安定面与箭支上的羽毛作用相同,可确保飞机平稳向前飞行.
俯仰:飞机利用机翼和尾翼的操纵面进机动.通过升降舵的上下偏转来实现飞机的抬头和低头(俯仰轴).
偏航:通过方向舵的左右偏转,机头可向左或向右摆动(偏航轴).
横滚:利用副翼使飞机围绕其横滚轴向左或向右倾斜.
襟翼与前缘缝翼:飞机的机翼有前缘缝翼和襟翼,它们在起飞和降落低速飞行过程中可展开,在巡航高速飞行过程中可收回.起落架也在飞行过程中收起以减少飞行阻力.另外喷气飞机一般采用后掠机翼,与直翼飞机相比,后掠翼可以使飞机的飞行速度更接近音速.
滑翔:飞机也是效率极高的滑翔机.即使没有发动机的推力,飞机每下降1英尺高度也可以向前滑翔20英尺.一般来说,如果一架飞机在巡航高度飞行时,所有发动机都失效,那么在下降到海平面高度前,还可滑翔至少100英里(160公里).
扰流板:由于飞机的飞行速度很快,所以需要扰流板来帮助它减速并降低高度.扰流板实际上是机翼上面的由液压作动的面板.有时飞行员称之为“减速板”或“减升板”,这些名称反映了它们的功能.在飞机着陆时,扰流板打开,以确保飞机着陆.(见下图)
二、气动升力
飞机在飞行过程中受到四种作用力:
*升力——由机翼产生的向上作用力
*重力——与升力相反的向下作用力
*推力——由发动机产生的向前作用力
*阻力——由空气阻力产生的向后作用力.
机翼:飞机机翼具有独特的剖面,称为翼型.从侧面看,机翼顶部弯曲,而底部相对较平.机翼在空气中穿过将气流分隔开来.一部分空气从机翼上方流过,另一部分从下方流过.但是由于机翼上部表面是弯曲的,因而从上方通过的空气速度加快.结果是使机翼上方的气压降低.与之相反,机翼下方的空气相当于沿直线流动,其速度与压力保持不变.(见下图)
当气流填补局部真空时,机翼阻碍了它,这样机翼就被空气抬起.飞机向前飞行得越快,机翼产生的气动升力也就越大.当升力大于重力时,飞机就可以飞行了.
注释:气动升力遵循柏努利原理,即当流体速度增加时,其压力就会减小.丹尼尔·柏努利(1700-1782)是第一个确定流体压力、密度与速度三者之间基本关系的人.
推力: 如果你吹一只气球,然后放开它,观察它如何在空中飞来飞去,你就会明白喷气推进的基本原理.喷气式发动机使用快速旋转的涡轮来驱动风扇,风扇吸入空气,使之与燃油混合,然后向后喷射出膨胀的空气/燃气混合气.因为每个作用力都会有一个相等的反作用力,因此,当涡轮发动机将空气向后推时,飞机就会向前疾冲.
扩展资料
水流抽气机原理
一、用途:
利用水流使周围的空气压力降低,从而吸取容器中气体分子.一般用来吸取吸滤瓶中的空气,使瓶内的压力降低.(下图是吸滤瓶)
二、使用方法:
下图为一典型的水流抽气机的外观.
它的上端较粗的口径处和水龙头的出水口相接.其直下方的开口则为水流出口.在它的侧方的连通管则连接到欲抽气的容器上.当使用时,则为如下图的情形.
水流抽气机和水龙头以橡皮管连接,相接处皆以管束栓紧.(下图是管束图片)
右侧的连通管亦以管束栓紧橡皮管后再连接到吸滤瓶上.当水管中的水向下流出进入水流抽气机时,因水流抽气机的内部有导流的构造,可使水流经由一较小的通道冲下,造成水流加速的效应.当水的流速加快时,在其近旁的空气分子的运动速率也会加快;由伯努利原理可知:在其侧管内靠近水流的气体压力应较其外侧的气体压力低.因此使得侧管的气体不断地向水流处移动,而产生了抽取其它容器中气体的功能.