http://www.nyq.cn
 当前位置:首页-> 备课参考 -> 高二物理 -> 高二下学期 -> 第二十章 光的反射和折射

第五节 棱镜

作者:未知来源:中央电教馆时间:2006/4/5 10:03:01阅读:nyq
字号:|

扩展资料

物理世界:世界十大经典物理试验

  最近,美国两位学者在全美物理学家中做了一份调查 ,请他们提名有史以来最出色的十大物理试验,结果刊登在了9月份的美国《物理世界》杂志上.其中多数都是我们在中学课本中耳熟能详的经典之作.
  令人惊奇的是十大经典试验几乎都是由一个人独立完成,或者最多有一两个助手协助.试验中没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器.
  所有这些实验的另外共通之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识.
  从十大经典科学试验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样.9月24日的《纽约时报》(按时间先后顺序)对此做了专门介绍.

米歇尔·傅科钟摆试验

  排名第十.1851年法国科学家傅科当众做了一个实验,用一根长220英尺的钢丝吊着一个重62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它的摆动轨迹.周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶.实际上这是因为房屋在缓缓移动.傅柯的演示说明地球是在围绕地轴旋转.在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期.在南半球,钟摆应是逆时针转动,而在赤道上将不会转动.在南极,转动周期是24小时.

卢瑟福发现核子

  排名第九.1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒.但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊.卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕.

伽利略的加速度试验

  排名第八.伽利略继续他的物体移动研究.他做了一个6米多长,3米多宽的光滑直木板槽.再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下.然后测量铜球每次下滑的时间和距离,研究它们之间的关系.亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程.伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离.因为存在重力加速度.

埃拉托色尼测量地球圆周

  排名第七.在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶.物体没有影子,太阳直接照入井中.埃拉托色尼意识到这可以帮助他测量地球的圆周.在几年后的同一天的同一时间,他记录了同一地点的物体的影子.发现太阳光线有稍稍偏离,与垂直方向大约成7度角.剩下的就是几何问题了.假设地球是球状,那么它的圆周应是360度.如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离.因此地球圆周应该是25万个希腊运动场.今天我们知道埃拉托色尼的测量误差仅仅在5%以内.

卡文迪许扭矩试验

  排名第六.牛顿的另一大贡献是他的万有引力理论:两个物体之间的吸引力与他们质量的平方成正比,与他们距离的平方成反比.但是万有引力到底多大?
  18世纪末,英国科学家亨利·卡文迪许决定要找到一个计算方法.他把两头带有金属球的6英尺木棒用金属线悬吊起来.再用两个350磅重的皮球放在足够近的地方,以吸引金属球转动,从而使金属线扭动,然后用自制的仪器测量出微小的转动.
  测量结果惊人的准确,他测出了万有引力的参数恒量.在卡文迪许的基础上可以计算地球的密度和质量.地球重:6.0×1024公斤,或者说13万亿万亿磅.

托马斯·杨的光干涉试验

  排名第五.牛顿也不是永远都对.牛顿曾认为光是由微粒组成的,而不是一种波.1830年英国医生也是物理学家的托马斯·杨向这个观点挑战.他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞.让光线透过,并用一面镜子反射透过的光线.然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束.结果看到了相交的光线和阴影.这说明两束光线可以像波一样相互干涉.这个试验为一个世纪后量子学说的创立起到了至关重要的作用.

牛顿的棱镜分解太阳光

牛顿的棱镜分解太阳光

  排名第四.艾萨克·牛顿出生那年,伽利略与世长辞.牛顿1665年毕业于剑桥大学的三一学院.当时大家都认为白光是一种纯的没有其它颜色的光,而有色光是一种不知何故发生变化的光(又是亚利斯多德的理论).
  为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱.人们知道彩虹的五颜六色,但是他们认为那时因为不正常.牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的.

罗伯特·米利肯的油滴试验

  排名第三.很早以前,科学家就在研究电.人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到.1897年,英国物理学家托马斯已经得知如何获取负电荷电流.1909年美国科学家罗伯特·米利肯开始测量电流的电荷.
  他用一个香水瓶的喷头向一个透明的小盒子里喷油滴.小盒子的顶部和底部分别放有一个通正电的电板,另一个放有通负电的电板.当小油滴通过空气时,就带有了一些静电,他们下落的速度可以通过改变电板的电压来控制.经过反复试验米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量.

伽利略的自由落体试验

  排名第二.在16世纪末人人都认为重量大的物体比重量小的物体下落的快因为伟大的亚里士多德是这么说的.伽利略,当时在比萨大学数学系任职,他大胆的向公众的观点挑战,他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地.他向世人展示尊重科学而不畏权威的可贵精神.

托马斯·杨的双缝演示应用于电子干涉试验

  排名第一.牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确.光既不是简单的由微粒构成,也不是一种单纯的波.20世纪初,麦克斯·普克朗和艾伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光.但是其他试验还是证明光是一种波状物.经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒,(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性.
  将托马斯·杨的双缝演示改造一下可以很好的说明这一点.科学家们用电子流代替光束来解释这个实验.根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,他们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影.这说明微粒也有波的效应.
  是谁最早做了这个试验已经无法考证.根据刊登在《今日物理》杂志的一篇论文看,人们推测应该是在1961年.(新华社:2002-09-27 08:56)

物体的颜色

  人的眼睛只能感觉到电磁波谱中很窄的一段(真空中波长为7700 到3900 的一段),这一部分称为可见光,而可见光中不同的频率成分又能引起不同的颜色感觉.因此物体的颜色是由射入到人眼睛中的光波的频率决定的.自然界的物体是多层次的,有丰富的色彩,而产生各种颜色的原因却是个很复杂的问题,下面只是从两个方面粗略地加以说明.
  (1)发光物体的颜色.发光物体即光源,光源可分为两大类,一类是热辐射光源,它发射的光谱都是连续光谱,而光谱中各成分的权重分布,与发光体的温度有关.温度越高,光谱中的高频率部分(包括可见光中的蓝、紫色光以及紫外线)越多,温度越低,则光谱中的低频率部分(可见光中的红、橙色光及红外线)越多,因此热辐射光源的温度与颜色有对应关系.恒星发光就是热辐射,天文学上按照颜色把恒星分为青、白、黄、红四个等级,太阳底子“黄”,属于温度较低的第三等级.炼钢炉里铁水的温度,以前就是老工人根据经验靠眼睛观察颜色来判断的,现在可以采用光电比色仪等精密仪器,但原理仍然相同.另一类光源是非热辐射光源,例如荧光、磷光、激光等.这类光源辐射的电磁波的频率成分,与物质内分子、原子、电子的跃迁及振动等运动都有关,而决定颜色的主要是电子的能级跃迁,因为电子在能级跃迁过程中辐射的光子能量,通常落入和可见光相对应的区域内.
  (2)不发光物体的颜色,它与物体本身的性质有关,也与入射光的频率成分有关.同一个物体在不同的光源的照射下可以呈现不同的颜色,这是由于不同的光源发射的光波频率成分不同而造成的.复色光(白光)照射,物体可以呈现多种色彩,而使用单色光照明,物体则只能呈现这一种颜色或黑色.下面我们具体分析一下白光照射物体的情况.
  白光照射到物体上,会出现三种不同的颜色,即表面色,内体色和干涉色.表面色是指物体表面层对光的直接反射而形成的颜色,一般说来,这些反射光遵守反射定律,与物质本身没有其他作用,因此表面色一般为白色,但也有些物体表面(特别是一些颜料)在直接反射过程中有强烈的选择吸收作用,因而表面色为某种特定的颜色.内体色是指光波进入物质表面以内一定深度,再反射回来或透射过去而形成的颜色,这些光在物质内与物质本身发生作用,“由于物质对光波的选择吸收作用,使物体呈现一定颜色.干涉色则是由于表面层(有时是附着层或镀膜)的干涉、衍射作用而使某种色光得到加强,某种色光减弱而形成的颜色.

颜色的三要素

  色调、饱和度、亮度称为色的三要素.色调是颜色的种类.对单色光来说,色调是由光的频率决定的,而对复色光来说,不同的色光按不同的比例混合,会使人眼睛产生相同颜色的感觉,因此色调并不能决定色光光谱的频率分布.饱和度反映颜色的深浅,它是由色光中混入白光的数量决定的,混入的白光愈多,颜色愈浅,即饱和度愈小,完全没有混入白光,颜色最深,饱和度达100%.亮度反映强弱,它是人眼所感觉到的颜色明亮程度的物理量.由于人眼对不同频率的色光感觉的敏锐程度不同,同样强度的不同色光照到人眼,人感到的亮度并不相同.一般说来,人眼对波长为5550 的黄绿色光最为敏感.
  有时把色调和饱和度合称为“色品”.

最早认识光的色散现象实验

  中国人在公元10世纪,把经日光照射以后的天然透明晶体叫做“五光石”或“放光石”,认识到“就日照之,成五色如虹霓”。这是世界上对光的色散现象的最早认识。它表明人们已经对光的色散现象从神秘中解放出来,知道它是一种自然现象,这是对光的认识的一大进步。比牛顿通过三棱镜把日光分成七色,说明白光是由这七色光复合而成的认识早了七百年。

三原色

  如果我们把从白光得到的光谱分成大致相等的三段,那么频率较小的一段中各种色光混合的结果是红色,频率较大的一段混合成蓝色,中间一段混合成绿色.把这三种颜色的光混合起来,也能得到白光.若把这三种颜色的光或其中两种光按不同的比例混合起来,还能得到很多种不同的色光.因此,通常把红、绿、蓝三种颜色叫做三原色.三原色和三原色混合得到的几种基本颜色如图所示.如用较大比例的红色和较小比例的绿色混合就得到橙色.上面的方法称为“加色法”,即两种或三原色按一定的比例相加,就得到另外一种颜色.彩色电视机就是利用这个原理:彩色显像管的荧光屏上,有许多可以发光的小单元,每个小单元由三个距离很近的小点子组成,它们分别可以发出红光、绿光和蓝光,显像管后部有三个电子枪,分别射出三束细电子束,使三个小点分别发光,由于电子束的强弱不同,使得三种原色发光强弱不同,人们在远处看来,就混合成一个色光点,三个电子枪保持同步扫描,就能显现出彩色画面了.

返回页首

关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号