http://www.nyq.cn
 当前位置:首页 -> 教学论文 -> 数学 -> 正文

如何帮助学生掌握三角函数的图像和性质

作者:未知来源:网络收集时间:2013-4-21 15:05:28阅读:
字号:|

  如何帮助学生掌握三角函数的图像和性质

  1、三角函数图像的作法与其它函数的图像的作法相同,基本步骤应该是:

  (1)确定函数定义域,值域;

  (2)研究单调性与奇偶性等性质;

  (3)取关键点列表描点;

  (4)结合函数的变化速度与变化趋势连线作图;

  2、与其它函数不同的就是周期性,体会最小正周期,与起点的位置无关;

  3、三角函数线是三角函数的几何定义,它把三角函数值准确的用有向线段的数量表示出来,这为准确描点提供了保障;

  4、由于图像本身就是函数的定义的一种形式,所以对函数图像的研究就显得非常的重要,而函数的性质都写在函数的图像上,所以不必太追究性质是什么、分几条,而应该让学生学会读懂函数的图像语言,会运用函数的图像解题就可以了;

  5、所谓深入思考就是体会函数=Asin(wx+q)+b中的各个参数对函数图像的影响,对性质的影响,这一点应该与其它函数对照研究;

  6、关于正弦与余弦函数图像与性质的再思考

  (1)单调区间的长度为最小正周期长度的一半,单调区间的两个端点是函数取到最值的点;

  (2)函数图像与x轴(平衡位置)的交点都是它们的对称中心,过最大或最小值点垂直于x轴(平衡位置所在的直线)的直线都是它们的对称轴。相邻的对称中心或是两个对称轴之间的距离应该是周期的一半;

  (3)两个函数图像形状相同,只是在坐标系中的位置不同,它们左右位置差周期的1/4;

  (4)对于函数y=Asin(wx+q)+b或y=Acos(wx+q)+b来说,对以上三条只需进行稍微的修改即可。

  有好多的学生在平移与伸缩变换的时候会混淆,知其然不知所以然……。下面提出几个问题,请各位朋友一起思考,你们在教学的时候是否对它们进行了研究?

  1、对于平移口诀:“左加右减,上加下减”的理解……左是x轴的负半轴,为什么要加呢?右是x轴的正半轴,为什么要减呢?上是y轴的正半轴,加就好理解了,下是y轴的负半轴也是一回事。

  2、对于左右平移与横坐标的伸缩变换,如果先后顺序倒置,则平移的量就可能不一致,这是为什么呢?

  3、把平移与伸缩变换推广到一般情况应该是什么样的?关键在什么地方?

  4、左右与上下平移变换与沿某向量平移的关系如何?

  5、对函数的平移与对曲线的平移有区别吗?

  6、平移函数的图像与坐标变换怎样进行区别?各有什么优点?

  1、对于平移口诀:“左加右减,上加下减”的理解……左是x轴的负半轴,为什么要加呢?右是x轴的正半轴,为什么要减呢?上是y轴的正半轴,加就好理解了,下是y轴的负半轴也是一回事。

  这个问题其实是这样的:向左移,每点的横坐标都在减少,应该把横坐标减去移动的量。但是,你必须把函数式y=f(x)变成x=g(y)的形式之后完成。比如:你把函数图像向左平移了2个单位,那么,函数式x=g(y)应该变为:x=g(y)-2。而这个式子变形之后就是:y=f(x+2)了。

  别的还用说吗?

  2、对于左右平移与横坐标的伸缩变换,如果先后顺序倒置,则平移的量就可能不一致,这是为什么呢?

  同问1的回答:把函数y=f(x)变形为x=g(y),如果向右平移a个单位,则变为x=g(y)+a,再伸缩为原来的b倍,则变为x=b[g(y)+a],解得:y=f[(1/b)x-a];如果横坐标先伸缩为原来的b倍,则变为x=bg(x),再向右平移a个单位,则变为x=bg(y)+a,解得:y=f[1/b(x-a)]。显然所得两函数表达式不同……

  3、把平移与伸缩变换推广到一般情况应该是什么样的?关键在什么地方?

  (1)如果把函数y=f(x)的图像向左平移a个单位,然后再把每个点的横坐标变为原来的b倍,则所得图像对应的函数解析式为:y=f(bx+a);

  (2)如果把函数y=f(x)的图像每个点的横坐标变为原来的b倍,然后再把图像向左平移a个单位,则所得图像对应的函数解析式为:y=f[b(x+a)];

  仔细分析,左右的平移与每点横坐标的伸缩都是对自变量x而言的,只对x做相应的处理。

  4、左右与上下平移变换与沿某向量平移的关系如何?

  左右的平移就是向量的横坐标,上下的平移就在于向量的纵坐标,横与纵坐标的符号代表平移的方向。目标相同,路径不同罢了。

  5、对函数的平移与对曲线的平移有区别吗?

  函数本身就是方程,所以函数图像就是曲线,所以对曲线的平移方法可以直接用到函数中来。但是,对函数图像的平移口诀“左加右减”不可以直接用到曲线的平移之中……原因应该由上面的可以知道了。

  6、平移函数的图像与坐标变换怎样进行区别?各有什么优点?

  这两者都可以完成同样的事,那就是简化我们要研究的函数表达或是曲线的方程,优点也与些类似。各自的优点可以通过例题来体会,不多述了。

上一篇: 如何实现高效的数学教学   下一篇: 没有,这是最后一篇!

关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号