┊ 教案资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
简介:
课时13 课 题:逻辑联结词(一) 教学目标:1.了解命题的概念和含有“或”、“且”、“非”的复合命题的构成. 2.理解逻辑联结词“或”、“且”、“非”的含义. 3.培养学生观察、推理的思维能力. 教学重点:逻辑联结词“或”、“且”、“非”的含义及复合命题的构成. 教学难点:对“或”的含义的理解. 教学方法:问题及发现教学. 教具准备:powerpoint 课件 教学过程 一、提出问题 逻辑在日常生活中有广泛的应用,比如:在我们推理的过程中;一些逻辑问题也是很有趣的例如:(三猫偷吃鱼问题)(投影) 初中已学习过一些逻辑的知识例如命题,请一位同学说出命题的概念.(判断一件事情的句子叫做命题.) 本节将继续研究和讨论命题及命题的构成. 二、新课 今天我们重新学习一下命题的概念:可以判断真假的语句叫做命题命题的定义:“可以判断真假的语句叫做命题”.与初中定义说法不同,但实质是一样的. 看投影 下列语句中哪些是命题,哪些不是命题?并说明理由: (1)12>6. (2)3是15的约数. (3)0.2是整数. (4)3是12的约数吗? (5)x>2. (6)这是一棵大树. (其中(1)、(2)、(3)是命题,因为它能确定语句的真假;而(4)、(5)、(6)不是命题,其中(4)不涉及真假,(5)不能判断真假,(6)中由于“大树”没有界定,不能判断真假.) 语句是不是命题,关键在于是否能判断其真假,即判断其是否成立,而不能判断真假的语句就不能叫命题。一般情况下,命题是陈述句,感叹句、疑问句和祈使句都不是命题。例如(4)、(5)、(6)。 再分析考虑下列语句:(投影) (7)10可以被2或5整除. (8)菱形的对角线互相垂直且平分. (9)0.5非整数. 上述三个命题与(1)、(2)、(3)的区别是什么?(比前面的命题复杂了.) 上述三个命题,是由简单的命题组合成的新的比较复杂的命题.那么命题(7)中的“或”与集合中学过的哪个概念的意义相同?(这里的“或”也是可兼或;与集合并集定义中:A∪B={x|x∈A或x∈B}的“或”意义相同.) 命题(8)中的“且”呢?(与集合交集定义中:A∩B={x|x∈A且x∈B}的“且”意义相同.) 对命题(9)中的“非”显然是否定的意思,即“0.5非整数”是对命题“ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |