设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
长春市普通高中2015届高三质量监测(四) 数 学(文科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项: 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内. 选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀. 第Ⅰ卷 一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上). 设全集,函数的定义域为,则为 A. B. C. D. 复数满足,,则 A. 1 B. C. 2 D. 设、是两个不同的平面,是一条直线,以下命题: ①若,,则; ②若,,则; ③若,,则; ④若,,则. 其中正确命题的个数是 A. 1 B. 2 C. 3 D. 4 如图是秦九韶算法的一个程序框图,则输出的为 A. 的值 B. 的值 C. 的值 D. 的值 已知、取值如下表: 0 1 4 5 6 8 1 3 5 6 7 8 从所得的散点图分析可知:与线性相关,且,则 A. 0.95 B. 1.00 C. 1.10 D. 1.15 已知:“函数为偶函数”是:“函数为偶函数”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 如图是一个几何体的三视图,则这个几何体的体积为 A. B. C. D. 在△中,角的对边分别是,若,,则 A. B. C. D. 函数的大致图象为
A. B. C. D. 若等差数列前项和有最大值,且,则当取最大值时,的值为 A. 10 B. 11 C. 12 D. 13 已知满足,且的最大值是,最小值是,若 (均为正实数),则的最小值为 A. 4 B. C. 8 D. 9 已知是双曲线的两个焦点,是上一点,若,且的最小内角为,则双曲线的离心率是 A. B. C. D. 第Ⅱ卷 本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答. 二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 已知向量,,且,则的最小值为________. 已知函数与的图象关于直线对称,将的图象向左平移个单位后与的图象重合,则的最小值为__________. 给出下列5种说法: ①在频率分布直方图中,众数左边和右边的直方图的面积相等; ②标准差越小,样本数据的波动也越小; ③回归分析研究的是两个相关事件的独立性; ④在回归分析中,预报变量是由解释变量和随机误差共同确定的; ⑤相关指数是用来刻画回归效果的,的值越大,说明残差平方和越小,回归模型的拟合效果越好. 其中说法正确的是________(请将正确说法的序号写在横线上). 如图,在三棱锥中,与都是边长为2的正三角形,且平面平面,则该三棱锥外接球的表面积为________. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). (本小题满分12分) 如图,一山顶有一信号塔(所在的直线与地平面垂直),在山脚处测得塔尖的仰角为沿倾斜角为的山坡向上前进米后到达处,测得的仰角为. (1) 求的长; (2) 若求信号塔的高度. (本小题满分12分) 某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下: API 天数 6 12 22 30 14 16 (1) 若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率; (2) API值对部分生产企业有着重大的影响,,假设某企业的日利润与API值的函数关系为:(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率. (本小题满分12分) 在三棱柱中,,侧棱平面,为棱的中点,为的中点,点在棱上,且. (1) 求证:平面; (2) 求点到平面的距离. (本小题满分12分) 已知点,点为平面上的动点,过点作直线的垂线,垂足为,且. (1) 求动点的轨迹的方程; (2) 过点的直线与轨迹交于点两点,在处分别作轨迹的切线交于点,求证:为定值. (本小题满分12分) 已知函数. (1) 若函数在区间上存在极值,求正实数的取值范围; (2) 如果当时,不等式恒成立,求实数的取值范围. 请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. (本小题满分10分)选修4-1:几何证明选讲. 如图是圆的一条弦,过点作圆的切线,作,与该圆交于点,若,. (1) 求圆的半径; (2) 若点为中点,求证三点共线. (本小题满分10分)选修4-4:坐标系与参数方程选讲. 在直角坐标系中,曲线的参数方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1) 求曲线的普通方程和曲线的直角坐标方程; (2) 求曲线上的任意一点到曲线的最小距离,并求出此时点的坐标. (本小题满分10分)选修4-5:不等式选讲. 设函数. (1) 若不等式的解集为,求实数的值; (2) 在(1)条件下,若存在实数,使得恒成立,求实数的取值范围. 长春市普通高中2015届高三质量监测(四) 数学(文科)参考答案及评分参考 说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(本大题包括12小题,每小题5分,共60分) 1. A 2. B 3. A 4. C 5. C 6. A 7. C 8. A 9. A 10. B 11. B 12. C 简答与提示: 【命题意图】本小题主要考查集合的计算,是一道常规问题. 【试题解析】A ,则.故选A. 【命题意图】本小题主要考查复数的几何意义. 【试题解析】B 根据复数的几何意义,由题意,可将看作夹角为的单位向量,从而,故选B. 【命题意图】本小题主要考查空间线和面的位置关系,对于特殊位置要提示考生多加论证,多举反例. 【试题解析】A 易知③正确,故选A. 【命题意图】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析,本题特殊利用秦九韶算法,使学生更加深刻地认识中国优秀的传统文化. 【试题解析】C 由秦九韶算法,,故选C. 【命题意图】本小题主要考查线性回归方程的性质和应用,对学生的数据处理能力提出一定要求. 【试题解析】C 由题意知,,从而代入回归方程有,故选C . 【命题意图】本小题主要借助条件逻辑的判定,考查函数的性质以及对复合函数奇偶性的判定等问题. 【试题解析】A 当为偶函数时,可得,故是的充分条件;而当为偶函数时,不能推出“为偶函数”成立,如,是偶函数,而不是偶函数,故选A. 【命题意图】本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式. 【试题解析】C 该几何体可看成以正视图为底面,4为高的棱柱与半圆柱的组合体,从而其体积为,故选C. 【命题意图】本小题主要考查正弦定理和余弦定理在解三角形中的应用,对学生的推理论证能力和数形结合思想提出一定要求. 【试题解析】A 由正弦定理得,,再由余弦定理可得,故选A. 【命题意图】本小题主要考查函数的性质对函数图像的影响,并通过对函数的性质来判断函数的图像等问题. 【试题解析】A 判断函数为奇函数,排除;又由于当时,的增加速度快,故选A. 【命题意图】B 本小题主要考查对等差数列通项以及变化规律的理解,还包括前项和的理解,理解等差数列性质以及特点的学生解决此类问题会比较容易. 【试题解析】由等差数列的前项和有最大值,可知,再由,知,从而使取最大值的,故选B. 【命题意图】本小题是线性规划的简单应用,对可行域的求取、对目标函数的理解都是考生必须掌握的基本技能,而且本题另外的一个重要考点是基本不等式的应用,此 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||