http://www.nyq.cn
 当前位置:首页-> 备课参考 -> 初一数学 -> 初一下学期(代数) -> 第七章 整式的乘除

第一节 同底数幂的乘法

作者:未知来源:中央电教馆时间:2006/4/8 18:03:13阅读:nyq
字号:|


同底数幂的乘法(一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入同底数幂的乘法.

  2.通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习同底数幂的乘法的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

   表示的意义是什么?其中 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

 
         *

 

 

  提问: 表示什么? 可以写成什么形式?______________

  答案:

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的同底数幂的乘法运算.

  请同学们先根据自己的理解,解答下面3个小题.

  

  

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  都是正整数)

  (板书)

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结:   ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

 同底数幂相乘   底数不变、指数相加

   运算形式     运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1  计算:

  (1)    (2)

  例2  计算:

  (1)    (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ①    ②    ③

  ④    ⑤    ⑥

  (2)计算:

  ①    ②    ③

  ④   ⑤   ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1)  (2)  (3)

  (4)  (5)   (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1)    (2)

  (3)   (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则

  (2) ,则

  (3) ,则

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  P94  1,2.

  参考答案

  略.

  


同底数幂的乘法(二)

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ①

  ②

  

  2.探索新知,讲授新课

  例1  计算:

  (1)  (2)  (3)

  解:(1)原式

   (2)原式

   (3)原式

  例2  计算:

  (1)   (2)

  (3)  (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 相等吗?

  3.巩固熟练

  (1)P93  练习(下)1,2.

  (2)计算:

  ①    ②

  ③   ④

  (3)错误辨析:

  计算:① 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94  A组3~5;P95  B组1~2.

  参考答案

  略.

  九、板书设计


投影幂

  例1    例2     练习

                小结:

  

关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号