第一节 同底数幂的乘法
同底数幂的乘法(一)
一、素质教育目标
1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.
2.能够熟练运用性质进行计算.
3.通过推导运算性质训练学生的抽象思维能力.
4.通过用文字概括运算性质,提高学生数学语言的表达能力.
5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.
二、学法引导
1.教学方法:尝试指导法、探究法.
2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.
三、重点·难点及解决办法
(-)重点
幂的运算性质.
(二)难点
有关字母的广泛含义及“性质”的正确使用.
(三)解决办法
注意对前提条件的判别,合理应用性质解题.
四、课时安排
一课时.
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
1.复习幂的意义,并由此引入同底数幂的乘法.
2.通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义.
3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.
七、教学步骤
(-)明确目标
本节课主要学习同底数幂的乘法的性质.
(二)整体感知
让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.
(三)教学过程
1.创设情境,复习导入
表示的意义是什么?其中 、 、 分别叫做什么?
师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.
. . |
提问: 表示什么? 可以写成什么形式?______________
答案: ;
【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.
2.尝试解题,探索规律
(1)式子 的意义是什么?(2)这个积中的两个因式有何特点?
学生回答:(1) 与 的积(2)底数相同
引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的同底数幂的乘法运算.
请同学们先根据自己的理解,解答下面3个小题.
;
; .
学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.
【教法说明】
(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.
(2)培养学生运用已有知识探索新知识的热情.
(3)体现学生的主体作用.
3.导向深入,揭示规律
计算 的过程就是
也就是
那么 ,当 都是正整数时,如何计算呢?
( 都是正整数) |
(板书)
学生活动:同桌研究讨论,并试着推导得出结论.
师生共同总结: ( 都是正整数)
教师把结论写在黑板上.
请同学们试着用文字概括这个性质:
同底数幂相乘 底数不变、指数相加 运算形式 运算方法 |
提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?
学生活动:观察 ( 都是正整数)
【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.
4.尝试反馈,理解新知
例1 计算:
(1) (2)
例2 计算:
(1) (2)
学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.
教师活动:统计做题正确的人数,同时给予肯定或鼓励.
注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.
【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.
5.反馈练习,巩固知识
练习一
(1)计算:(口答)
① ② ③
④ ⑤ ⑥
(2)计算:
① ② ③
④ ⑤ ⑥
学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.
练习二
下面的计算对不对?如果不对,应怎样改正?
(1) (2) (3)
(4) (5) (6)
学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.
【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.
6.变式训练,培养能力
练习三
填空:
(1) (2)
(3) (4)
学生活动:学生思考后回答.
【教法说明】这组题的目的是训练学生的逆向思维能力.
练习四
填空:
(1) ,则 .
(2) ,则 .
(3) ,则 .
学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.
【教法说明】此组题旨在增强学生应变能力和解题灵活性.
(四)总结、扩展
学生活动:1.同底数幂相乘,底数_____________,指数____________.
2.由学生说出本节体会最深的是哪些?
【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.
八、布置作业
P94 1,2.
参考答案
略.
同底数幂的乘法(二)
一、教学目标
1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.
2.培养学生运用公式熟练进行计算的能力.
3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:讲授法、练习法.
2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.
三、重点·难点及解决办法
(一)重点
同底数幂的运算性质.
(二)难点
同底数幂运算性质的灵活运用.
(三)解决办法
在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.
2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.
3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.
七、教学步骤
(-)明确目标
本节课重点是熟练运用同底数暴的乘法运算公式.
(二)整体感知
要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.
(三)教学过程
1.创设情境、复习导入
(1)叙述同底数幂乘法法则并用字母表示.
(2)指出下列运算的错误,并说出正确结果.
①
②
③
强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.
(3)填空:
① ,
② , ,
2.探索新知,讲授新课
例1 计算:
(1) (2) (3)
解:(1)原式
(2)原式
(3)原式
例2 计算:
(1) (2)
(3) (4)
解:(1)原式
(2)原式
(3)原式
(4)
或原式
提问: 和 相等吗?
3.巩固熟练
(1)P93 练习(下)1,2.
(2)计算:
① ②
③ ④
(3)错误辨析:
计算:① ( 是正整数)
解:
说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.
②
解:原式
说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为
(四)总结、扩展
底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.
八、布置作业
P94 A组3~5;P95 B组1~2.
参考答案
略.
九、板书设计
|
例1 例2 练习 小结: |