┊ 教案资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
简介:
一.课题:等差数列与等比数列的基本运算 二.教学目标:掌握等差数列和等比数列的定义,通项公式和前项和的公式,并能利用这些知识解决有关问题,培养学生的化归能力. 三.教学重点:对等差数列和等比数列的判断,通项公式和前项和的公式的应用. 四.教学过程: (一)主要知识: 1.等差数列的概念及其通项公式,等差数列前项和公式; 2.等比数列的概念及其通项公式,等比数列前项和公式; 3.等差中项和等比中项的概念. (二)主要方法: 1.涉及等差(比)数列的基本概念的问题,常用基本量来处理; 2.使用等比数列前项和公式时,必须弄清公比是否可能等于1还是必不等于1,如果不能确定则需要讨论; 3.若奇数个成等差数列且和为定值时,可设中间三项为;若偶数个成等差数列且和为定值时,可设中间两项为,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似. 4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. (三)例题分析: 例1.(1)设数列是递增等差数列,前三项的和为,前三项的积为,则它的首项为 2 . (2)已知等差数列的公差,且成等比数列,则. 例2.有四个数, | ||||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |