┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
江苏省启东中学2016—2017学年度第一学期第一次月考 高三物理试卷 一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意. 1.一颗卫星绕地球沿椭圆轨道运动,A、B是卫星运动的远地点和近地点.下列说法中正确的是( ) A.卫星在A点的角速度大于B点的角速度 B.卫星在A点的加速度小于B点的加速度 C.卫星由A运动到B过程中动能减小,势能增加 D.卫星由A运动到B过程中引力做正功,机械能增大 2.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g值,g值可由实验精确测得,近年来测g值的一种方法叫“对称自由下落法”,它是将测g转变为测长度和时间,具体做法是:将真空长直管沿竖直方向放置,自其中O点上抛小球又落到原处的时间为T2,在小球运动过程中经过比O点高H的P点,小球离开P点到又回到P点所用的时间为T1,测得T1、T2和H,可求得g等于 ( ) A. B. C. D. 3.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,A、B、C都处于静止状态.则( ) A.B受到C的摩擦力一定不为零 B.C受到水平面的摩擦力一定为零 C.不论B、C间摩擦力大小、方向如何,水平面对C的摩 擦力方向一定向左 D.水平面对C的支持力与B、C的总重力大小相等 4.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则 ( ) A.t1时刻小球动能最大 B.t2时刻小球动能最大 C.t2~t3这段时间内,小球的动能先增加后减少 D.t2~t3这段时间内,小球增加的动能等于弹簧减 少的弹性势能 5.如图,a、b两点位于同一条竖直线上,从a、b两点分别以速度v1、v2水平抛出两个相同的质点小球,它们在水平地面上方的P点相遇。假设在相遇过程中两球的运动没有受到影响,则下列说法正确的是( ) A.两个小球从a、b两点同时抛出 B.两小球抛出的初速度 v1=v2 C.从a点抛出的小球着地时重力的瞬时功率较大 D.从a点抛出的小球着地时水平射程较大 二、多项选择题.本题共6小题,每小题4分,共计24分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分. 6.在杂技表演中,猴子由静止开始沿竖直杆向上做加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示.关于猴子的运动情况,下列说法中正确的是( ) A.相对地面的运动轨迹为直线 B.相对地面做匀加速曲线运动 C.t时刻猴子对地的速度大小为v0+at D.t时间内猴子对地的位移大小为 7.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静放有一小球C,A、B、C的质量均为m.现给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环的摩擦阻力),瞬时速度必须满足 ( ) A.最小值 B.最大值 C.最小值 D.最大值 8.一颗科学资源探测卫星的圆轨道经过地球两极上空,运动周期为T=1.5小时,某时刻卫星经过赤道上A城市上空,已知:地球自转周期T0 (24小时)、卫星绕地球轨道半径r和万有引力常量为G,根据上述条件( ) A.可以计算地球的质量 B.可以计算地球半径 C.可以计算地球表面重力加速度 D.可以断定,再经过24小时卫星第二次到达A城市上空 9.如图所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为m的物体将弹簧压缩锁定在A点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点B距A点的竖直高度为h,物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g.则下列说法正确的是 ( ) A.弹簧的最大弹性势能为mgh B.物体从A点运动到B点的过程中系统损失的机械能为mgh C.物体的最大动能等于弹簧的最大弹性势能 D.物体最终静止在B点 10.某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图象,如图所示(除2 s~10 s时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2 s~14 s时间段内小车的功率保持不变,在14 s末停止遥控而让小车自由滑行,小车的质量为1.0 kg,可认为在整个运动过程中小车所受的阻力大小不变.则下列说法正确的是 ( ) A.小车受到的阻力大小为1.5 N B.小车匀加速阶段的牵引力为4N C.小车匀速行驶阶段的功率为9 W D.小车加速过程中位移大小为42 m 11.如图所示,直杆AB与水平面成α角固定,在杆上套一质量为m的小滑块,杆底端B点处有一弹性挡板,杆与板面垂直,滑块与挡板碰撞后原速率返回.现将滑块拉到A点由静止释放,与挡板第一次碰撞后恰好能上升到AB的中点,设重力加速度为g,由此可以确定( ) A.滑块下滑和上滑过程加速度的大小a1、a2 B.滑块第1次与挡板碰撞前速度v1 C.滑块与杆之间动摩擦因数μ D.滑块第k次与挡板碰撞到第k+1次与挡板碰撞时间间隔Δt 三、简答题:本题共2小题,共计20分. 12.(12分)(1)在探究求合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条. ① 实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的( ) A.将橡皮条拉伸相同长度即可 B.将橡皮条沿相同方向拉即可 C.将弹簧秤都拉伸到相同刻度 D.将橡皮条和绳的结点拉到相同位置 ②同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是( ) A.两细绳必须等长 B.弹簧秤、细绳、橡皮条都应与木板平行 C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大 D.拉橡皮条的细绳要短些 (2)如图所示为探究物体运动加速度与物体质量、物 体受力关系的实验装置,砂和砂桶质量用m表示, 小车和车上所加砝码总质量用M表示,小车运动 加速度用a表示。 ①实验过程中需要适当抬起长木板的一端以平衡小车所受到的摩擦力,该步骤中木板被抬起的角度与小车质量 (选填“有关”或“无关”); ②在探究加速度与小车受力关系过程中, 甲和乙两小组分别用下列两组数据进行实验操作,其中你认为合理的是 (选填“甲”或“乙”); M甲=500g M乙=500g 甲m(g) 20 22 24 26 乙m(g) 20 30 40 50 ③在探究加速度与小车质量关系过程中,应该保持 不变,通过增减小车中砝码改变小车质量M,实验测出几组a、M数据,下列图线能直观合理且正确反映a-M关系的是 。
13.(8分)在验证机械能守恒定律的实验中,使质量为m=200 g的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图所示.O为纸带下落的起始点,A、B、C为纸带上选取的三个连续点.已知打点计时器每隔T=0.02 s打一个点,当地的重力加速度为g=9.8 m/s2,那么 (1)计算B点瞬时速度时,甲同学用v=2gxOB,乙同学用vB=.其中所选择方法正确的是______(填“甲”或“乙”)同学. (2)同学丙想根据纸带上的测量数据进一步计算重物和纸带下落过程中所受的阻力,为此他计算出纸带下落的加速度为________m/s2,从而计算出阻力Ff=________N. (3)若同学丁不慎将上述纸带从OA之间扯断,他仅利用A点之后的纸带能否实现验证机械能守恒定律的目的?______.(填“能”或“不能”) 四、计算题:本题共4小题,共计61分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位. 14.(15分)在游乐场,有一种大型游乐设施跳楼机,如图所示,参加游戏的游客被安全带固定在座椅上,提升到离地最大高度64m处,然后由静止释放,开始下落过程可认为自由落体运动,然后受到一恒定阻力而做匀减速运动,且下落到离地面4m高处速度恰好减为零。已知游客和座椅总质量为1500kg,下落过程中最大速度为20m/s,重力加速度g=10m/s2。求: (1)游客下落过程的总时间; (2)恒定阻力的大小。 15.(15分)摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图甲所示.考虑安全、舒适、省时等因素,电梯的加速度a是随时间t变化的.已知电梯在t=0时由静止开始上升,a-t图象如图乙所示.电梯总质量m=2.0×103 kg.忽略一切阻力,重力加速度g取10 m/s2. (1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2; (2)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由v-t图象求位移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图乙所示的a-t图象,求电梯在第1 s内的速度改变量Δv1和第2 s末的速率v2; (3)求电梯以最大速率上升时,拉力做功的功率P;再求在0~11 s时间内,拉力和重力对电梯所做的总功W. 16.(15分)如图所示,半径R=0.2 m的光滑四分之一圆轨道MN竖直固定放置,末端N与一长L=0.8 m的水平传送带相切,水平衔接部分摩擦不计,传动轮(轮半径很小)做顺时针转动,带动传送带以恒定的速度v0运动.传送带离地面的高度h=1.25 m,其右侧地面上有一直径D=0.5 m的圆形洞,洞口最左端的A点离传送带右端的水平距离s=1 m,B点在洞口的最右端.现使质量为m=0.5 kg的小物块从M点由静止开始释放,经过传送带后做平抛运动,最终落入洞中,传送带与小物块之间的动摩擦因数μ=0.5,g取10 m/s2.求: (1)小物块到达圆轨道末端N时对轨道的压力; (2)若v0=3 m/s,求小物块在传送带上运动的时间; (3)若要使小物块能落入洞中,求v0应满足的条件. 17.(16分)如图所示,倾角为θ的斜面与足够大的光滑水平面在D处平滑连接,斜面上有A、B、C三点,AB间距为2L,BC、CD间距均为4L,斜面上BC部分粗糙,其余部分光滑. 4块完全相同、质量均匀分布的长方形薄片,紧挨在一起排在斜面上,从下往上编号依次为1、2、3、4,第1块的下边缘恰好在A处.现将4块薄片一起由静止释放,薄片经过D处时无能量损失且相互之间无碰撞.已知每块薄片质量为m、长为L,薄片与斜面BC间的动摩擦因数为tanθ,重力加速度为g.求: (1) 第1块薄片下边缘刚运动到B时的速度大小v1; (2) 第1块薄片刚好完全滑上粗糙面时的加速度大小a和此时第3、4块间的作用力大小F; (3) 4块薄片全部滑上水平面后,相邻薄片间的距离d. 答案 一.单选题(每题3分) 1.B 2.A 3.C 4.C 5.C 二.多选(每题4分,少选2分,错选零分) 6. BD 7. CD 8. AD 9.BD 10.ACD 11. AC 三、简答题:本题共2小题,共计20分. 12(12分) (1)①D (2分) ②B (2分) (2)①无关(2分) ②乙 (2分) ③砂和砂筒质量(2分) C(2分) 13(8分,每空2分) (1)乙 (2)9.5 0.06 (3)能 解析 (1)如用v=2gxOB求vB,就等于认为机械能已经守恒了,应选用vB=. (2)由Δx=aT2知 a== = m/s2 =9.5 m/s2 由mg-Ff=ma知Ff=mg-ma=0.06 N. (3)能.可利用m(v-v)=mgh12验证. 四、计算题:本题共4小题,共计62分) 14.解:设下落过程中最大速度为v,自由落体的高度为h1, 则:
解得:t1=2s 设匀减速的高度为h2,加速度大小为a, 则: 下落的总距离h=h1+h2=64m-4m=60m 联立解得:a=5m/s2 t2=4s 游客下落过程的总时间为t=t1+t2=6s (2)匀减速过程中:设阻力为f,由牛顿第二定律得:f-mg=ma 已知m=1500kg,可得f=22500N 15.答案 (1)2.2×104 N 1.8×104 N (2)0.5 m/s 1.5 m/s (3)2.0×105 W 1.0×105 J 解析 (1)由牛顿第二定律,有F-mg=ma 由a-t图象可知,F1和F2对应的加速度分别是 a1=1.0 m/s2,a2=-1.0 m/s2,则 F1=m(g+a1)=2.0×103×(10+1.0) N=2.2×104 N F2=m(g+a2)=2.0×103×(10-1.0) N=1.8×104 N (2)类比可得,所求速度变化量等于第1 s内a-t图线与t轴所围图形的面积, 可得Δv1=0.5 m/s 同理可得2 s内的速度变化量Δv2=v2-v0=1.5 m/s v0=0,第2 s末的速率v2=1.5 m/s (3)由a-t图象可知,11 s~30 s内速率最大,其值vm等于0~11 s内a-t图线与t轴所围图形的面积,此时电梯做匀速运动,拉力F等于重力mg,所求功率 P=Fvm=mg·vm=2.0×103×10×10 W=2.0×105 W 由动能定理得,总功 W=Ek2-Ek1=mv-0=×2.0×103×102 J=1.0×105 J. 16. 答案 (1)15 N,方向竖直向下 (2)0.3 s (3)2 m/s 解析 (1)设小物块滑到圆轨道末端时速度为v1,根据机械能守恒定律得:mgR=mv 设小物块在轨道末端所受支持力的大小为FN,据牛顿第二定律得:FN-mg=m 联立以上两式代入数据得:FN=15 N 根据牛顿第三定律,小物块对轨道的压力为15 N,方向竖直向下. (2)小物块在传送带上加速运动时,由μmg=ma,得 a=μg=5 m/s2 加速到与传送带达到共同速度所需要的时间 t1==0.2 s,位移x=t1=0.5 m 匀速运动的时间t2==0.1 s 故小物块在传送带上运动的时间t=t1+t2=0.3 s (3)小物块从传送带右端做平抛运动,有h=gt2 恰好落在A点s=v2t,得v2=2 m/s 恰好落在B点D+s=v3t,得v3=3 m/s 故v0应满足的条件是2 m/s 17. 解:(1) 研究4块薄片整体,根据机械能守恒定律有 4mg·2Lsinθ=(4m)v 解得v1=2 (2) 根据牛顿第二定律有4mgsinθ-μmgcosθ=4ma 解得a=gsinθ 研究第4块薄片,根据牛顿第二定律有 mgsinθ-F=ma 解得F=mgsinθ (3) 设4块滑片刚好全部滑上粗糙面时的速度为v2,研究整体下端由A到C的过程,根据动能定理有4mg·6Lsinθ-·4L=(4m)v 设每块滑片滑到水平面时的速度为v3,对每块滑片运用动能定理有 mg·-L=mv-mv 相邻滑片到达水平面的时间差t= 由于d=v3t 解得d=L 通达教学资源网 http://www.nyq.cn/ 通达教学资源网 http://www.nyq.cn/ | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |