http://www.nyq.cn
 当前位置:首页-> 备课参考 -> 初三数学 -> 初三上学期(几何) -> 第七章 圆

第十二节 和圆有关的比例线段

作者:未知来源:中央电教馆时间:2006/4/8 18:03:14阅读:nyq
字号:|


第1课时:相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

   1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  

   ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA·PB=PC·PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

  2、从一般到特殊,发现结论.

   对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA·PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

   3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA·PB ;AC2=AP·AB;CB2=BP·AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

   引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

   将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA·PB 

  引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业

  教材P132中 9,10;P134中B组4(1).

  


第2课时 切割线定理

  教学目标:

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点:

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点:

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:要证PT2=PA·PB,  可以证明,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

   4、引导学生用语言表达上述结论.

  切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:PA·PB=PC·PD.

  2、组织学生用多种方法证明:

  方法一:要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

  方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

  方法三:引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

  分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

   例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:AE=BF.

  分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.

  巩固练习:P128练习1、2 

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业教材P132中,11、12题.

  

关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号