http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高中竞赛数学试卷 -> 下载
试卷资源详情
资源名称 高中数学竞赛 平面几何
文件大小 362KB
所属分类 高中竞赛数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-9-4 20:30:16
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

第一讲 注意添加平行线证题

在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.

添加平行线证题,一般有如下四种情况.

1 为了改变角的位置

大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.

例1 设P、Q为线段BC上两点,且BP=CQ,A为BC外一动点(如图1).当点A运动到使

∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.

答: 当点A运动到使∠BAP=∠CAQ时,△ABC为等腰三角形.

证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.

在△DBP=∠AQC中,显然 ∠DBP=∠AQC,∠DPB=∠C.

由BP=CQ,可知 △DBP≌△AQC. 有DP=AC,∠BDP=∠QAC.

于是,DA∥BP,∠BAP=∠BDP.

则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故AB=DP.

所以AB=AC.

这里,通过作平行线,将∠QAC“平推”到∠BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.

例2 如图2,四边形ABCD为平行四边形,∠BAF=∠BCE.求证:∠EBA=∠ADE.

证明:如图2,分别过点A、B作ED、EC的平行线,得交点P,连PE.

由AB CD,易知△PBA≌△ECD.有PA=ED,PB=EC.

显然,四边形PBCE、PADE均为平行四边形.有 ∠BCE=∠BPE,∠APE=∠ADE.

由∠BAF=∠BCE,可知 ∠BAF=∠BPE.

有P、B、A、E四点共圆. 于是,∠EBA=∠APE. 所以,∠EBA=∠ADE.

这里,通过添加平行线,使已知与未知中的四个角通过P、B、A、E四点共圆,紧密联系起来.∠APE成为∠EBA与∠ADE相等的媒介,证法很巧妙.

2 欲“送”线段到当处

利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.

例3 在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PM+PN=PQ.

证明:如图3,过点P作AB的平行线交BD于F,过点F作BC的平行线分别交PQ、AC

于K、G,连PG.

由BD平行∠ABC,可知点F到AB、BC两边距离相等.有KQ=PN.

显然,==,可知PG∥EC.

由CE平分∠BCA,知GP平分∠FGA.有PK=PM.于是,

PM+PN=PK+KQ=PQ.

这里,通过添加平行线,将PQ“掐开”成两段,证得PM=PK,就有PM+PN=PQ.证法非常简捷.

3 为了线段比的转化

由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.

例4 设M1、M2是△ABC的BC边上的点,且BM1=CM2.任作一直线分别交AB、AC、AM1、AM2于P、Q、N1、N2.试证:+=+.

证明:如图4,若PQ∥BC,易证结论成立. 若PQ与BC不平行,设PQ交直线BC于D.过点A作PQ的平行线交直线BC于E.

由BM1=CM2,可知BE+CE=M1E+M2E,易知

=,=,

=,=. 则+===+.

所以,+=+.

这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.

例5 AD是△ABC的高线,K为AD上一点,BK交AC于E,CK交AB于F.求证:∠FDA=∠EDA.

证明:如图5,过点A作BC的平行线,分别交直线DE、DF、BE、CF于Q、P、N、M.

显然,==.

有BD·AM=DC·AN. (1)

由==,有 AP=. (2)

由==,有 AQ=. (3)

对比(1)、(2)、(3)有 AP=AQ.

显然AD为PQ的中垂线,故AD平分∠PDQ. 所以,∠FDA=∠EDA.

这里,原题并未涉及线段比,添加BC的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP与AQ的相等关系显现出来.

4 为了线段相等的传递

当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.

例6 在△ABC中,AD是BC边上的中线,点M在AB边上,点N在AC边上,并且∠MDN=90°.如果BM2+CN2=DM2+DN2,求证:AD2=(AB2+AC2).

证明:如图6,过点B作AC的平行线交ND延长线于E.连ME.

由BD=DC,可知ED=DN.有 △BED≌△CND.

于是,BE=NC.

显然,MD为EN的中垂线.有 EM=MN.

由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM为直角三角形,∠MBE=90°.

有 ∠ABC+∠ACB =∠ABC+∠EBC=90°. 于是,∠BAC=90°.

所以,AD2==(AB2+AC2).

这里,添加AC的平行线,将BC的以D为中点的性质传递给EN,使解题找到出路.

如图7,AB为半圆直径,D为AB上一点,分别在半圆上取点E、F,使EA=DA,

FB=DB.过D作AB的垂线,交半圆于C.求证:CD平分EF.

证明:如图7,分别过点E、F作AB的垂线,G、H为垂足,连FA、EB.

易知 DB2=FB2=AB·HB,

AD2=AE2=AG·AB.

二式相减,得 DB2-AD2=AB·(HB-AG),或 (DB-AD)·AB=AB·(HB-AG).

于是,DB-AD=HB-AG,或 DB-HB=AD-AG. 就是DH=GD.

显然,EG∥CD∥FH. 故CD平分EF.

这里,为证明CD平分EF,想到可先证CD平分GH.为此添加CD的两条平行线EG、FH,从而得到G、H两点.证明很精彩.

经过一点的若干直线称为一组直线束.

一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.

如图8,三直线AB、AN、AC构成一组直线束,DE是与BC平行的直线.于是,有

= =,即 =或=.

此式表明,DM=ME的充要条件是

BN=NC.

利用平行线的这一性质,解决某些线段相等的问题会很漂亮.

例8 如图9,ABCD为四边形,两组对边延长后得交点E、F,对角线BD∥EF,AC的延长

线交EF于G.求证:EG=GF.

证明:如图9,过C作EF的平行线分别交AE、AF于M、N.由BD∥EF,可知MN∥BD.易知

S△BEF=S△DEF.

有S△BEC=S△ⅡKG- *5ⅡDFC.

可得MC=CN.

所以,EG=GF.

例9 如图10,⊙O是△ABC的边BC外的旁切圆,D、E、F分别为⊙O与BC、CA、AB

的切点.若OD与EF相交于K,求证:AK平分BC.

证明:如图10,过点K作BC的行平线分别交直线AB、AC于Q、P两点,连OP、OQ、

OE、OF.

由OD⊥BC,可知OK⊥PQ.

由OF⊥AB,可知O、K、F、Q四点共圆,有 ∠FOQ=∠FKQ.

由OE⊥AC,可知O、K、P、E四点共圆.有 ∠EOP=∠EKP.

显然,∠FKQ=∠EKP,可知 ∠FOQ=∠EOP.

由OF=OE,可知 Rt△OFQ≌Rt△OEP. 则OQ=OP.

于是,OK为PQ的中垂线,故 QK=KP.

所以,AK平分BC.

综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.

练习题

1. 四边形ABCD中,AB=CD,M、N分别为AD、BC的中点,延长BA交直线NM于E,延长CD交直线NM于F.求证:∠BEN=∠CFN.

(提示:设P为AC的中点,易证PM=PN.)

2. 设P为△ABC边BC上一点,且PC=2PB.已知∠ABC=45°,∠APC=60°.求∠ACB.

(提示:过点C作PA的平行线交BA延长线于点D.易证△ACD∽△PBA.答:75°)

3. 六边开ABCDEF的各角相等,FA=AB=BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF的面积.

(提示:设EF、DC分别交直线AB于P、Q,过点E作DC的平行线交AB于点M.所求面积与EMQD面积相等.答:120cm2)

4. AD为Rt△ABC的斜边BC上的高,P是AD的中点,连BP并延长交AC于E.已知AC:AB=k.求AE:EC.

(提示:过点A作BC的平行线交BE延长线于点F.设BC=1,有AD=k,DC=k2.答:)

5. AB为半圆直径,C为半圆上一点,CD⊥AB于D,E为DB上一点,过D作CE的垂线交CB于F.求证:=.

(提示:过点F作AB的平行线交CE于点H.H为△CDF的垂心.)

6. 在△ABC中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C的对边分别为a、b、c.求证:+=.

(提示:在BC上取一点D,使AD=AB.分别过点B、C作AD的平行线交直线CA、BA于点E、F.)

7. 分别以△ABC的边AC和BC为一边在△ABC外作正方形ACDE和CBFG,点P是EF的中点.求证:P点到边AB的距离是AB的一半.

8. △ABC的内切圆分别切BC、CA、AB于点D、E、F,过点F作BC的平行线分别交直线DA、DE于点H、G.求证:FH=HG.

(提示:过点A作BC的平行线分别交直线DE、DF于点M、N.)

9. AD为⊙O的直径,PD为⊙O的切线,PCB为⊙O的割线,PO分别交AB、AC于点M、N.求证:OM=ON.

(提示:过点C作PM的平行线分别交AB、AD于点E、F.过O作BP的垂线,G为垂足.AB∥GF.)

第二讲 巧添辅助 妙解竞赛题

在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.

1 挖掘隐含的辅助圆解题

有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.

1.1  作出三角形的外接圆

例1 如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点

且∠BED=2∠CED=∠A.求证:BD=2CD.

分析:关键是寻求∠BED=2∠CED与结论的联系.容易想到作∠BED的平分线,

但因BE≠ED,故不能直接证出BD=2CD.若延长AD交△ABC的外接圆于F,

则可得EB=EF,从而获取.

证明:如图1,延长AD与△ABC的外接圆相交于点F,连结CF与BF,则∠BFA=∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.

又∠BEF=∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.

  故EB=EF.

作∠BEF的平分线交BF于G,则BG=GF.

因∠GEF=∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF=FC.

于是,BF=2CF.故BD=2CD.

1.2 利用四点共圆

例2 凸四边形ABCD中,∠ABC=60°,∠BAD=∠BCD=90°, AB=2,CD=1,

对角线AC、BD交于点O,如图2.则sin∠AOB=____.

分析:由∠BAD=∠BCD=90°可知A、B、C、D

四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC、AD即可.

解:因∠BAD=∠BCD=90°,故A、B、C、D四点共圆.延长BA、CD交于P,则∠ADP=∠ABC=60°.

设AD=x,有AP=x,DP=2x.由割线定理得(2+x)x=2x(1+2x).

解得AD=x=2-2,BC=BP=4-.

由托勒密定理有 BD·CA=(4-)(2-2)+2×1=10-12.

又SABCD=S△ABD+S△BCD=. 故sin∠AOB=.

例3 已知:如图3,AB=BC=CA=AD,AH⊥CD于H,CP⊥BC,CP交AH于P.求证:

△ABC的面积S=AP·BD.

分析:因S△ABC=BC2=AC·BC,只

须证AC·BC=AP·BD,转化为证△APC∽△BCD.这由A、B、C、Q四点共圆易证(Q为BD与AH交点).

证明:记BD与AH交于点Q,则由AC=AD,AH⊥CD得∠ACQ=∠ADQ.

又AB=AD,故∠ADQ=∠ABQ.

从而,∠ABQ=∠ACQ.可知A、B、C、Q四点共圆.

∵∠APC=90°+∠PCH=∠BCD,∠CBQ=∠CAQ,

∴△APC∽△BCD.

∴AC·BC=AP·BD.

于是,S=AC·BC=AP·BD.

2 构造相关的辅助圆解题

有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关

的辅助圆,将原问题转化为与圆有关的问题加以解决.

2.1 联想圆的定义构造辅助圆

例4 如图4,四边形ABCD中,AB∥CD,AD=DC=DB=p,BC=q.求对角线AC的长.

分析:由“AD=DC=DB=p”可知A、B、C在半径为p的⊙D上.利用圆的性质即

可找到AC与p、q的关系.

解:延长CD交半径为p的⊙D于E点,连结AE.显然A、B、C在⊙D上.

∵AB∥CD,

∴BC=AE.

从而,BC=AE=q.

在△ACE中,∠CAE=90°,CE=2p,AE=q,故 AC==.

2.2 联想直径的性质构造辅助圆

例5 已知抛物线y=-x2+2x+8与x轴交于B、C两点,点D平分BC.若在x轴上侧的

A点为抛物线上的动点,且∠BAC为锐角,则AD的取值范围是____.

分析:由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上

侧,从而可确定动点A的范围,进而确定AD的取值范围.

解:如图5,所给抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(-2,0)、

C(4,0).分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1-2,1)

、Q(1+2,1).

可知,点A在不含端点的抛物线PA0Q内时,∠BAC<90°.且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.

2.3 联想圆幂定理构造辅助圆

例6 AD是Rt△ABC斜边BC上的高,∠B的平行线交AD于M,交AC于N.求证:AB2-AN2=BM·BN.

分析:因AB2-AN2=(AB+AN)(AB-AN)=BM·BN,而由题设易知AM=AN,联想割线定理,构造辅助圆即可证得结论.

证明:如图6,

∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5,

∴∠1=∠2.从而,AM=AN.

以AM长为半径作⊙A,交AB于F,交BA的延长线于E.则AE=AF=AN.

由割线定理有

BM·BN=BF·BE =(AB+AE)(AB-AF)=(AB+AN)(AB-AN) =AB2-AN2,

即 AB2-AN2=BM·BN.

例7 如图7,ABCD是⊙O的内接四边形,延长AB和DC相交于E,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切⊙O于P、Q.求证:EP2+FQ2=EF2.

分析:因EP和FQ是⊙O的切线,由结论联想到切割线定理,构造辅助圆使EP、FQ向EF转化.

证明:如图7,作△BCE的外接圆交EF于G,连结CG.

因∠FDC=∠ABC=∠CGE,故F、D、C、G四点共圆.

由切割线定理,有

EF2=(EG+GF)·EF=EG·EF+GF·EF=EC·ED+FC·FB

=EC·ED+FC·FB=EP2+FQ2,

即 EP2+FQ2=EF2.

2.4 联想托勒密定理构造辅助圆

例8 如图8,△ABC与△A'B'C'的三边分别为a、b、c与a'、

b'、c',且∠B=∠B',∠A+∠A=180°.试证:aa'=bb'+cc'.

分析:因∠B=∠B',∠A+∠A'=180°,由结论联想到托勒密定理,

构造圆内接四边形加以证明.

证明:作△ABC的外接圆,过C作CD∥AB交圆于D,连结AD和BD,

如图9所示. ∵∠A+∠A'=180°=∠A+∠D,

∠BCD=∠B=∠B',

∴∠A'=∠D,∠B'=∠BCD.

∴△A'B'C'∽△DCB. 有==, 

即 ==. 故DC=,DB=.

又AB∥DC,可知BD=AC=b,BC=AD=a.

从而,由托勒密定理,得 AD·BC=AB·DC+AC·BD,

即 a2=c·+b·. 故aa'=bb'+cc'.

练习题

1. 作一个辅助圆证明:△ABC中,若AD平分∠A,则=.

(提示:不妨设AB≥AC,作△ADC的外接圆交AB于E,证△ABC∽△DBE,从而==.)

2. 已知凸五边形ABCDE中,∠BAE=3a,BC=CD=DE,∠BCD=∠CDE=180°-2a.求证:∠BAC=∠CAD=∠DAE.

(提示:由已知证明∠BCE=∠BDE=180°-3a,从而A、B、C、D、E共圆,得∠BAC=∠CAD=∠DAE.)

3. 在△ABC中AB=BC,∠ABC=20°,在AB边上取一点M,使BM=AC.求∠AMC的度数.

(提示:以BC为边在△ABC外作正△KBC,连结KM,证B、M、C共圆,从而∠BCM=∠BKM=10°,得∠AMC=30°.)

4.如图10,AC是ABCD较长的对角线,过C作CF⊥AF,CE⊥AE.

求证:AB·AE+AD·AF=AC2. (提示:分别以BC和CD为直径作圆交AC于点

G、H.则CG=AH,由割线定理可证得结论.)

5. 如图11.已知⊙O1和⊙O2相交于A、B,直线CD过A交⊙O1和⊙O2于C、D,

且AC=AD,EC、ED分别切两圆于C、D.求证:AC2=AB·AE.

(提示:作△BCD的外接圆⊙O3,延长BA交⊙O3于F,证E在⊙O3

::立即下载::
进入下载页面
下载出错
相关资源:
·2015年全国高中数学联赛江苏赛区初赛试卷
·2014年全国高中数学联赛福建赛区预赛试题参考答案
·数学联赛
·2014年全国高中数学联合竞赛一试模拟试题
·2013年全国高中数学联赛试题解答
·2013年浙江省高中数学竞赛(联赛预赛)试卷及答案(PDF版)
·2013年高中数学联赛江苏省初赛参考答案(PDF格式)
·2013年全国高中联赛福建省预赛试题参考答案
·2013年全国高中数学联赛预赛山东参考答案及评分标准
·全国高中数学联赛模拟试题(一)  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号