┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
房山区2015-2016年学年度第一学期期末试卷 高二数学(文) 本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后,将本试卷和答题纸一并交回。 第一部分 (选择题 共50分) 一、选择题共10小题,每小题5分,共50分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)复数在复平面内对应的点位于 ﹙A﹚第一象限 (B)第二象限 ﹙C﹚第三象限 (D﹚第四象限 命题意图:考查复数的几何意义。基础题 (2)抛物线的准线方程是 (A) (B) (C) (D) 命题意图:考查抛物线的定义。基础题 (3)椭圆的长轴长为 (A) (B) (C) (D) 命题意图:考查椭圆的几何性质。基础题 (4)小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少是 (A)分钟 (B)分钟 (C)分钟 (D)分钟 命题意图:考查流程图的作用。要使所用时间最少,起床穿衣—煮粥—吃早饭。 (5)圆与圆的位置关系是 (A)相离 (B)相交 (C)外切 (D)内切 命题意图:考查圆的一般方程与标准方程,圆与圆的位置关系。用画图或者两圆心间的距离判断可知答案。 (6)在正方体中,分别是的中点,则直线与直线的位置关系是 (A)相交 (B)平行 (C)异面 (D)无法确定 命题意图:考查学生作图能力,空间想象能力。画出立体图,根据条件出判断直线与直线共面。 (7)“”是“复数是纯虚数”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 命题意图:考查复数的基本概念,充要条件。当且时,复数是纯虚数。 (8)设表示直线,表示两个不同的平面,下列命题中正确的是 (A)若,,则 (B)若,,则 (C)若,,则 (D)若,,则 命题意图:考查线面位置关系的判定。此题需要排除错误选项,对学生空间想象能力和对相关定理的熟练程度要求高。试卷讲评时错误选项举反例让学生体会。答错的学生建议面谈纠正。 (9)设直线与椭圆相交于,两点,分别过,向轴作垂线,若垂足恰为椭 圆的两个焦点,则 (A) (B) (C) (D) 命题意图:考查椭圆的几何性质,直线与圆锥曲线的位置关系。,满足椭圆方程,代入可以解得。 (10)如图,在四棱锥中,底面,底面为梯形,,,,,.若点是线段上的动点,则满足的点的个数是 (A) (B) (C) (D) 命题意图:考查直线与平面垂直性质,考查计算能力,是选择题里难度最大的题目。此题转化为在梯形中,满足的点的个数,再利用直角三角形中的勾股定理得出。此题对学生能力要求高,转化为求满足的点是关键思维点,讲评时重点引导学生怎么思考。 第二部分 (非选择题 共100分) 二、填空题共6小题,每小题5分,共30分。 (11)命题“,”的否定是 . 命题意图:考查含有全称量词的命题的否定。基础题 (12)复数 . 命题意图:考查含有复数的四则运算。基础题 (13)已知是双曲线的一个焦点,则 ,该双曲线的渐近线方程 为 . 命题意图:考查双曲线的标准方程,几何性质。基础题 (14)某四棱锥的三视图如图所示,则该四棱锥最长的棱长为 . 命题意图:考查简单空间几何图形的三视图,考查空间想象能力。由三视图正确还原原几何体的解题的关键。 (15)设椭圆的左、右焦点分别为,,是椭圆上的点.若, ,则椭圆的离心率为 . 命题意图:考查椭圆定义,几何性质,考查学生的计算能力。利用,及直角三角形的三边关系是解决此题的关键。对学生能力要求高,难度适中。 (16)已知曲线的方程是,且.给出下列三个命题: ①若,则曲线表示椭圆; ②若,则曲线表示双曲线; ③若曲线表示焦点在轴上的椭圆,则的值越大,椭圆的离心率越大. 其中,所有正确命题的序号是______. 命题意图:考查圆锥曲线的定义,几何性质,考查学生分析问题和解决问题的能力。时,方程表示圆可以排除①。③的判断是个难点,离心率为,的值越大,椭圆的离心率越大。 三、解答题共6小题,共70分。解答应写出文字说明,演算步骤或证明过程。 (17)(本小题10分) 已知直线过点,且与直线平行. (Ⅰ)求直线的方程; (Ⅱ)若直线与直线垂直,且在轴上的截距为,求直线的方程. 命题意图:考查直线平行和垂直斜率的关系,直线方程的点斜式、斜截式和一般式。基础题。 (18)(本小题10分) 已知圆的圆心为点,且经过点. (Ⅰ)求圆的方程; (Ⅱ)若直线与圆相交于两点,且,求的值. 命题意图:考查圆的标准方程,直线与圆的位置关系,(两点间的距离公式,点到直线的距离公式),考查学生的计算能力。求圆的弦长的方法要求学生熟练掌握,得分不理想的学生一定督促其巩固。 (19)(本小题12分) 如图,在四棱柱中,平面,底面是菱形.过的平面与侧 棱,分别交于点,. (Ⅰ)求证:; (Ⅱ)求证:平面. 命题意图:考查线面平行的性质定理,线面垂直的判定定理,考查空间想象能力。此题证明过程要求表述清晰,书写规范。评分的标准制定考虑了定理中的每个条件,有缺失的要扣分,力求让学生意识到书写规范的重要性。 (20)(本小题13分) 已知椭圆:,直线与椭圆交于不同的两点. (Ⅰ)求椭圆的焦点坐标; (Ⅱ)求实数的取值范围; (Ⅲ)若,求弦的长. 命题意图:考查椭圆的标准方程,直线与椭圆的位置关系,考查学生的计算能力。直线与椭圆位置关系的判定及相交弦弦长的求法都是椭圆的常考知识点。出题时考虑到教、学、评的一致性,此题的呈现方式非常朴实,和教材例题难度相当,要求学生掌握并能正确解答。 (21)(本小题13分) 如图,正方形与梯形所在的平面互相垂直,,, . (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求三棱锥的体积. 命题意图:考查线面平行的判定,面面垂直的性质,线面垂直的判定,棱锥的体积公式,考查空间想象能力和推理论证能力。第一问大部分学生会想到构造平行四边形证明,利用面面平行来证明更简洁明了,讲评时要复习这一部分的整体知识网络。第二问重点要考查学生面面垂直的性质,所以评分标准比较严苛,条件叙述占了2分,没有条件就不得分,同样是想让学生意识到书写的规范性。但第一问考虑到19题已经按规范评分以及此题分值所限,评分标准就比较宽松,是采点给分。评分标准的严苛和宽松也是命题意图的体现,没有绝对的标准。第三问借助第二问的结论主要是考查体积公式,所以若计算错误,但有体积公式得1分。计算正确,无公式不扣分。数学题目中公式也是考查的一个角度,所以要培养学生在卷面上呈现公式的习惯,一般的评分标准会在公式处有采分点。 (22)(本小题12分) 椭圆:的一个焦点与抛物线焦点相同,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆的长轴上,点是椭圆上任意一点.当最小时,点恰好落在椭圆的 右顶点,求实数的取值范围. 命题意图:考查抛物线的方程,椭圆的方程,椭圆的相关性质,考查学生分析问题和解决问题的能力。此题有难度,但难度不是很大。命题意图是以鼓励学生为主,第二问能力强的学生分析清楚也能得出结果,思路并不复杂。最后一题不想太难为学生,希望大部分学生能动笔得分,也希望一部分学生能得满分。大部分文科学生对数学有恐惧感,希望试卷讲评时通过此题给学生树立信心,感受数学的魅力。 房山区2015-2016学年度第一学期终结性检测试卷 高二数学(文)参考答案 一、选择题(每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 B A D C B A B D B C 二、填空题(每小题5分,共30分,有两空的第一空3分,第二空2分) (11), (12) (13) ; (14) (15) (16)②③ (只写一个正确的得3分,有错的不得分) 三、解答题(共6小题,共70分) (17)(本小题10分) 解: (Ⅰ)由直线与直线平行可知的斜率为, ------------------2分 又直线过点,则直线的方程为 即 ------------------3分 (Ⅱ)由直线与直线垂直可知的斜率为, ------------------2分 又直线在轴上的截距为,则直线的方程为 即 ------------------3分(18)(本小题10分) 解: (Ⅰ)圆的半径 ------------------2分 由圆心为点,所以圆的方程为 ------------------3分(Ⅱ)圆心为点,半径为,, 所以圆心到直线的距离为, ------------------2分 即 ------------------2分 (注:未得出,但点到直线的距离公式正确得1分) 解得, | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |