┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
房山区2015-2016学年高二上学期期末考试 数学(理) 本试卷共6页,150分。考试时长120分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后,将本试卷和答题纸一并交回。 第一部分 (选择题 共50分) 一、选择题共10小题,每小题5分,共50分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知抛物线的方程是,则它的焦点坐标是 (A) (B) (C) (D) 命题意图:考查抛物线的定义。基础题 (2)已知平面的法向量为,平面的法向量为,若,则 ﹙A﹚ (B) ﹙C﹚ (D﹚ 命题意图:考查两个平行平面的法向量的关系。知道空间向量平行的条件就可得出答案。基础题 (3)圆与圆的位置关系是 (A)相离 (B)相交 (C)外切 (D)内切 命题意图:考查圆的一般方程与标准方程,圆与圆的位置关系。用画图或者两圆心间的距离判断可知答案。 (4)如图,在四面体中,设是的中点,则等于 (A) (B) (C) (D) 命题意图:考查空间向量的加法。熟悉三角形法则平行四边形法则就可得出答案。 (5)“直线与平面无公共点”是“直线与平面平行”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 命题意图:考查直线与平面平行的定义,充要条件。理解直线与平面平行的定义,理解充要条件才不会错选。 (6)若方程表示焦点在轴上的椭圆,则实数的取值范围是 (A) (B) (C) (D) 命题意图:考查椭圆的定义,标准方程,性质。此题若学生没有关注到方程非标准方程,错误认为也能得出正确答案。因为此题考查的重点是焦点在轴上的椭圆方程的特点,学生能犯这个错误而选A也说明他知道这个知识点。初稿的方程是,但担心学生因为的粗心处理而错选答案,所以改简单了。 (7)设表示直线,表示两个不同的平面,下列命题中正确的是 (A)若,,则 (B)若,,则 (C)若,,则 (D)若,,则 命题意图:考查线面位置关系的判定。此题需要排除错误选项,对学生空间想象能力和对相关定理的熟练程度要求高。试卷讲评时错误选项举反例让学生体会。答错的学生建议面谈纠正。 (8)棱长为的正方体中,的值为 (A) (B) (C) (D) 命题意图:考查学生画图能力,考查空间向量的数量积。此题难度不大,方法有很多。 ,或或建系做。此题需要学生自己作图分析,所以题目虽难度不大,但位置靠后。 (9)设椭圆的左、右焦点分别为,,是椭圆上的点.若, ,则椭圆的离心率为 (A) (B) (C) (D) 命题意图:考查椭圆定义,几何性质,考查学生的计算能力。利用,及直角三角形的三边关系是解决此题的关键。对学生能力要求高,难度适中。 (10)如图,在四棱锥中,底面,底面为梯形,,, ,,.若点是线段上的动点,则满足的点的个数是 (A) (B) (C) (D) 命题意图:考查直线与平面垂直性质,考查计算能力,是选择题里难度最大的题目。此题转化为在梯形中,满足的点的个数,再利用直角三角形中的勾股定理得出。此题对学生能力要求高,转化为求满足的点是关键思维点,讲评时重点引导学生怎么思考。 第二部分 (非选择题 共100分) 二、填空题共6小题,每小题5分,共30分。 (11)命题“,”的否定是 . 命题意图:考查含有全称量词的命题的否定。基础题 (12)已知向量,,则 . 命题意图:考查空间向量的运算。基础题 (13)已知是双曲线的一个焦点,则 ,该双曲线的渐近线方程 为 . 命题意图:考查双曲线的标准方程,几何性质。基础题 (14)某四棱锥的三视图如图所示,则该四棱锥最长的棱长为 . 命题意图:考查简单空间几何图形的三视图,考查空间想象能力。由三视图正确还原原几何体的解题的关键。 (15)已知点,是抛物线的焦点,是抛物线上任意一点,则的最小 值为 ;点到直线的距离的最小值为 . 命题意图:考查抛物线的定义和性质,考查点到直线的距离,重点是把所求问题进行转化,得出答案。此类题目的通性通法需要学生掌握。 (16)在平面直角坐标系中,动点到点的距离比它到轴的距离多,记点的轨迹为曲线, 给出下列三个结论: ①曲线过坐标原点; ②曲线关于轴对称; ③曲线的轨迹是抛物线. 其中,所有正确结论的序号是 . 命题意图:考查根据条件求曲线方程,根据方程研究曲线性质。根据几何条件写出代数关系式,就可以判断①②正确。曲线是由一条射线和抛物线组成的。 三、解答题共6小题,共70分。解答应写出文字说明,演算步骤或证明过程。 (17)(本小题10分) 已知直线过点,且与直线平行. (Ⅰ)求直线的方程; (Ⅱ)若直线与直线垂直,且在轴上的截距为,求直线的方程. 命题意图:考查直线平行和垂直斜率的关系,直线方程的点斜式、斜截式和一般式。基础题。 (18)(本小题10分) 已知圆的圆心为点,且经过点. (Ⅰ)求圆的方程; (Ⅱ)若直线与圆相交于两点,且,求的值. 命题意图:考查圆的标准方程,直线与圆的位置关系,(两点间的距离公式,点到直线的距离公式),考查学生的计算能力。求圆的弦长的方法要求学生熟练掌握,得分不理想的学生一定督促其巩固。 (19)(本小题12分) 如图,在四棱锥中,底面是菱形,,过的平面分别交棱,于点,. (Ⅰ)求证:; (Ⅱ)求证:平面. 命题意图:考查线面平行的性质定理,线面垂直的判定定理,考查空间想象能力。此题证明过程要求表述清晰,书写规范。评分的标准制定考虑了定理中的每个条件,有缺失的要扣分,力求让学生意识到书写规范的重要性。 (20)(本小题13分) 已知抛物线:,过点且斜率为的直线与抛物线交于不同的两点. (Ⅰ)求抛物线的准线方程; (Ⅱ)求实数的取值范围; (Ⅲ)若线段中点的横坐标为,求的长度. 命题意图:考查抛物线的基本性质,直线与抛物线的位置关系,考查学生的计算能力。直线与圆锥曲线位置关系的判定及相交弦弦长的求法都是常考知识点,要求学生掌握并能准确解答。根据第三问的条件得出两个值,根据条件需要舍去一个,粗心的学生可能忽略,即使不影响弦长的计算,未说明舍去的也扣1分。 (21)(本小题13分) 如图,正方形与梯形所在的平面互相垂直,,, . (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)为线段上一点,若直线与直线所成的角为,求的长. 命题意图:考查线面平行的判定,面面垂直的性质,用向量求面面角,线线角,考查空间想象能力和计算能力。第一问大部分学生会想到构造平行四边形证明,利用面面平行来证明更简洁明了,讲评时要复习这一部分的整体知识网络。第二问和第三题利用向量解决角的度量问题,常规角度,难度不大。 (22)(本小题12分) 椭圆的中心在坐标原点,右焦点为,点到短轴的一个端点的距离等于焦距. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与曲线的交点为,求△面积的最大值. 命题意图:考查椭圆的标准方程和简单性质,第一问求椭圆方程需根据椭圆的性质得出。第二问思路不复杂,分析清楚可以得出答案。最后一题不想太难为学生,希望一部分学生能得满分。此题虽叙述简洁,但有一定的思维含量,第一问命题时的想法就是条件不能“白”,也要考查学生的分析问题的能力。第二问的难点主要是求的最大值,需要运用以前的知识。最后一题也鼓励学生做,不仅仅是只做第一问。 房山区2015-2016学年度第一学期终结性检测试卷 高二数学(理)参考答案 一、选择题(每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 A C B D C A D B B C 二、填空题(每小题5分,共30分,有两空的第一空3分,第二空2分) (11), (12) (13); (14) (15); (16)①② (只写一个正确的得3分,有错的不得分) 三、解答题(共6小题,共70分) (17)(本小题10分) 解: (Ⅰ)由直线与直线平行可知的斜率为, ------------------2分 又直线过点,则直线的方程为 即 ------------------3分 (Ⅱ)由直线与直线垂直可知的斜率为, ------------------2分 又直线在轴上的截距为,则直线的方程为 即 ------------------3分(18)(本小题10分) 解: (Ⅰ)圆的半径 ------------------2分 由圆心为点,所以圆的方程为 ------------------3分(Ⅱ)圆心为点 | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |