┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
2016年麓山国际实验学校高二第一次暑假检测试卷 理科数学 时量:100分钟 总分:150 选择题(每小题5分,共60分) 1. 集合,,则( ) A. B. C. D. 2.设是等差数列. 下列结论中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 3.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( ) A.2 B.1 C.0 D. 4.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A. B. C. D.5 5.直线3x+4y=b与圆相切,则b= ( ) A. -2或12 B. 2或-12 C. -2或-12 D. 2或12 6.已知,是两条不同直线,,是两个不同平面,则下列命题正确的是( ) (A)若,垂直于同一平面,则与平行 (B)若,平行于同一平面,则与平行 (C)若,不平行,则在内不存在与平行的直线 (D)若,不平行,则与不可能垂直于同一平面 7. 已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( ) A.36π B.64π C.144π D.256π 8.设的内角,,的对边分别为,,.若,,,且,则( ) A. B. C. D. A. B. C. D. 10.已知函数在上有两个零点,则实数的取值范围是( ) A. B. C. D. 11.已知满足约束条件若的最大值为4,则( ) A. B. C. D. 12.如果一个圆锥的侧面展开图恰是一个半圆,那么这个圆锥轴截面三角形的顶角为( ) A. B. C. D. 13.已知 ,若 点是 所在平面内一点,且 ,则 的最大值等于( ) A.13 B.15 C.19 D.21 14.已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是( ) A. B. C. D. 填空题(每小题5分,共20分) 15.设是数列的前n项和,且,,则________. 16.若直线过点,则的最小值等于 17.在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为 18.已知函数,,则方程实根的个数为 解答题(每题14分,共70分) 19.已知函数 (1)求最小正周期; (2)求在区间上的最大值和最小值. 20.设数列的前项和为,.已知,,,且当时,. 求的值; 证明:为等比数列; 求数列的通项公式. 21.在△ABC中, 求的值 当△ABC的面积最大时,求的大小 22.如图所示,已知直二面角,P∈α,Q∈β,PQ与平面α,β所成的角都为30°,PQ=4,PC⊥AB,C为垂足,QD⊥AB,D为垂足.求: (1)直线PQ与CD所成角的大小; (2)四面体PCDQ的体积. 23.已知函数, 其反函数为 (1) 若的定义域为,求实数的取值范围; (2) 当时,求函数的最小值; (3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出、的值;若不存在,则说明理由. 麓山国际实验学校高二假期第一次检测(理科)参考答案 选择题 ACCCD DCBDB BCAD 填空题 15. 16. 4 17. 18. 4 解答题 19.(1) ;(2)最大值为,最小值为0 20.(1);(2)证明见解析;(3).
21.解析:(1)8 (2)
22. (1)如图,在平面β内,作CE綉DQ,连接PE,QE,则四边形CDQE为平
行四边形,所以EQ綉CD,即∠PQE为直线PQ与CD所成的角(或其补角). ∵α⊥β,α∩β=AB,PC⊥AB于C. ∴PC⊥β.同理QD⊥α, 又PQ与平面α,β所成的角都为30°, ∴∠PQC=30°,∠QPD=30°, ∴CQ=PQ·cos 30°=4×=2, DQ=PQ·sin 30°=4×=2. 在Rt△CDQ中,CD===2,从而EQ=2. ∵QD⊥AB,且四边形CDQE为平行四边形, ∴QE⊥CE.又PC⊥β,EQ?β,∴EQ⊥PC. 故EQ⊥平面PCE,从而EQ⊥PE. 在Rt△PEQ中,cos∠PQE===. ∴∠PQE=45°,即直线PQ与CD所成角的大小为45°. (2)在Rt△PCQ中,PQ=4,∠PQC=30°, ∴PC=2.而S△CDQ=CD·DQ=×2×2=2,故四面体PCDQ的体积为V=S△CDQ·PC=×2×2=. 23.解:(1) (2) (3)不存在. 通达教学资源网 http://www.nyq.cn/ | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |