┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
三明一中2016-2017学年(上)第二次月考 高三(文)数学试卷 (总分:150分 考试时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合 题目要求的,在答题卷相应题目的答题区域内作答) 1.设复数,则复数在复平面内对应的点到原点的距离是( ) A. 1 B. C. 2 D. 2.若角的终边经过点P(,则的值为( ) A. B. C. D. 3.集合=,,则( ) A. B. C. D. 4.向量与共线是四点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.设函数,,则是( ) A.最小正周期为的奇函数 B.最小正周期为的奇函数 C.最小正周期为的偶函数 D.最小正周期为的偶函数 6.已知①,②,③, ④,在如右图所示的程序框图中,如果输入,而输出,则在框图空白处可填入( ) A.①②③ B.②③ C.③④ D.②③④ 7.某船开始看见灯塔在南偏东的方向,后来船沿南偏东的方向航行后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A. B. C.15km D. 8.函数,的部分图象如右图所示,则( ) A. B. C. D. 9.已知ΔABC中,,若点D满足,则等于( ) A. B. C. D. 10.已知的值为( ) A. B. C. D. 11.已知函数 ,则、、的大小关系( ) A.>> B.>> C.>> D.>> 12.半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是( ) A.2 B.0 C. D. 第Ⅱ卷(非选择题 共90分) 二、填空题:(本大题共4小题,每小题5分,共20分.在答题卷相应题目的答题区域内作答) 13.长方形ABCD中,,E为CD的中点,则 . 14.已知ΔABC中,B=30o,AC=1,AB=,则边长BC为 . 15.已知向量,若与的夹角为,则向量在向量方向上的投影为 . 16.关于函数(,有下列命题,其中正确的命题序号是 . ① 的图象关于直线对称; ② 的图象可由的图象向右平移个单位得到; ③ 的图象关于点(对称; ④ 在上单调递增; ⑤ 若可得必为的整数倍; ⑥ 的表达式可改写成 . 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.在答题卷相应题目的答题区域内作答) 17.(本小题满分12分) 已知, ,且,. (I)求和的值; (II)求的值. 18.(本小题满分12分) 已知向量与的夹角为,,. (I)若,求实数k的值; (II)是否存在实数k,使得?说明理由.:.] 19.(本小题满分12分) 已知的外接圆半径,角A、B、C的对边分别是a、b、c,且. (I)求角B和边长b; (II)求面积的最大值及取得最大值时的a、c的值,并判断此时三角形的形状. 20.(本小题满分12分) 已知函数,. (I)求函数的单调增区间以及对称中心; (II)若函数的图象向左平移个单位后,得到的函数的图象关于y轴对称,求实数m的最小值. 21.(本小题满分12分) 已知函数. (I)若处取得极值,求实数a的值; (II)在(I)的条件下,若关于x的方程上恰有两个不同的实数根,求实数m的取值范围. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在极坐标系中,圆的极坐标方程为:.若以极点为原点,极轴所在直线为轴建立平面直角坐标系. (Ⅰ)求圆的直角坐标方程及其参数方程; (Ⅱ)在直角坐标系中,点是圆上动点,求的最大值,并求出此时点的直角坐标. 三明一中2016-2017学年(上)第二次月考 高三数学(文)试题参考答案 一、选择题:(5×12=60) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A D B C D D C A A A D 二、填空题:(4×5=20) 13. 14. 1或2 15. 16. ①④ 三、解答题:(第17-21每题12分,第22题10分,共70分) 17.解:(Ⅰ)∵且 ,即 ……3分 联立 解得 又[:] ……6分 (Ⅱ)由(Ⅰ)易求得 ……7分 又
……8分 ……9分 . ……12分 18.解:(Ⅰ)∵向量与的夹角为, ……2分 又且 ……4分 ……6分 (Ⅱ)若,则,使 ……8分 又向量与不共线 ……9分 解得: ……11分 存在实数时,有. ……12分 19.解::(Ⅰ) ,即 ……2分 又 ,即 ……3分 又 ……4分 由正弦定理有:,于是 ……6分 (Ⅱ)由余弦定理得 ,即,当且仅当时取“=” ……8分 ,即求面积的最大值为 ……10分 联立,解得 ……11分 又 ∴为等边三角形. ……12分 20.解:(I)∵ = ……2分 ∴令 ∴ ∴函数的单调增区间为 ……4分 又令,解得 ∴函数的对称中心为 ……6分 (II)若函数的图象向左平移个单位,则得到的函数为 ∴ ……8分 又函数的图象关于y轴对称 ∴当x=0时,函数 取得最大或最小值 ∴ ∴ ……10分 又 ∴实数m的最小值为. ……12分 21.解:(I) 由题意得,经检验满足条件 ……4分 (II)由(I)知 | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |