┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
甘肃省兰州第一中学2016届高三冲刺模拟题 数学(理科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分, 考试时间120分钟. 请将答案填在答题卡上. 第Ⅰ卷(选择题 共60分) 注意事项: 1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知为虚数单位,,若为纯虚数,则复数的模等于( ) A. B. C. D. 2. 若全集U=R集合为( ) A. B. C. D. 3. 已知数列{an}满足1+= (n∈N+),且a2+a4+a6=9,则 (a5+a7+a9)的值是( ) A. B. C.5 D.-5 4.设a为函数的最大值,则二项式的展开式中含项的系数是( ) A.192 B.-192 C.182 D.-182 5. 阅读如图所示的程序框图,则输出的的值是( ) A. B. C. D. 6.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的侧视图的面积不可能等于( ) A. B. C. D. 7. 已知若 (a,t均为正实数),类比以上等式,可推测a,t的值,则t-a=( ) A.31 B.41 C.55 D.71 8. 如图,四边形是边长为1的正方形,延长至,使得.动点从点出发,沿正方形的边按逆时针方向运动一周回到点,. 下列三个命题: ①当点与重合时,; ②的最小值为0,的最大值为3; ③在满足的动点中任取两个不同的点和,则或 其中正确命题的个数为( ) A. 0 B.1 C.2 D.3 9. 如图,已知直线与单位圆交于A,B两点,劣弧AB所对的圆心角为,则的值为( ) A. B. C. D. 10. 已知三棱锥的顶点都在球的球面上, ,平面 平面, 则球的表面积是( ) A. B. C. D. 11. 设、是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为 ( ) A. B. C. D. 12. 若函数的图象在处的切线与圆相切,则的最大值是( ) A.4 B. C.2 D. 第Ⅱ卷(非选择题 共90分) 注意事项: 本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效. 二、填空题:本大题共4小题,每小题5分,共20分. 13. 函数则 . 14. 已知实数,且点在不等式组表示的平面区域内,则的取值范围为 . 15. 已知数列{an}的通项公式为 ,其前n项和为Sn,则在数列S1、S2、…、S2 016中,有理数项的项数为 . 16.如图,在平面直角坐标系xOy中,分别为椭圆的左、右焦点,B、C分别为椭圆的上、下顶点,直线与椭圆的另一个交点为D.若,则直线CD的斜率为 .
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分) 已知函数,,将函数向左平移 个单位后得函数,设三个角A、B、C的对边分别为a、b、c. (Ⅰ)若,,,求a、b的值; (Ⅱ)若且,,求的取值范围. 18.(本小题满分12分) 某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂.现随机抽取这两种产品各60件进行检测,检测结果统计如下: 得分 [60,70) [70,80) [80,90) [90,100] 甲 5 10 34 11 乙 8 12 31 9 (Ⅰ)试分别估计产品甲,乙下生产线时为合格品的概率; (Ⅱ)生产一件产品甲,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件产品乙,若是合格品可盈利90元,若是不合格品则亏损15元.在(Ⅰ)的前提下: (1)记为生产1件甲和1件乙所得的总利润,求随机变量的分布列和数学期望; (2)求生产5件乙所获得的利润不少于300元的概率. 19.(本小题满分12分) 已知四边形满足∥,,是的中点,将沿着翻折成,使面面,为的中点. (Ⅰ)求四棱的体积; (Ⅱ)证明:∥面; (Ⅲ)求面与面所成二面角的余弦值. 20. (本小题满分12分) 已知抛物线:和点,若抛物线上存在不同两点、满足. (Ⅰ)求实数的取值范围; (Ⅱ)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由. 21. (本小题满分12分) 已知函数 (Ⅰ)求函数在点处的切线方程; (Ⅱ)求函数单调区间; (Ⅲ)若存在,使得(是自然对数的底数),求实数的取值范围. 选考题:(请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分; 做答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑.) 22.(本小题满分10分)选讲4-1:几何证明选讲 如图,AB是的一条切线,切点为B,直线ADE, CFD,CGE都是的割线,已知AC=AB. (Ⅰ)求证:FG//AC; (Ⅱ)若CG=1,CD=4,求的值. 23(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,直线的参数方程为 (t为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为 (Ⅰ)求直线及圆的直角坐标方程; (Ⅱ)设圆与直线交于点.若点的坐标为(3,),求. 24.(本小题满分10分)选修4—5:不等式选讲 (Ⅰ)求不等式的解集; (Ⅱ)已知,求证:. 兰州一中2016届高三冲刺模拟题参考答案(理科) 一、选择题(本题共12小题,每小题5分,共60分。) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A D B C C B D B D A D 二、填空题(本大题共4小题,每小题5分,共20分) 13. 14. 15.43 16. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分12分) 已知函数,,将函数向左平移个单位后得函数,设三个角、、的对边分别为、、. (Ⅰ)若,,,求、的值; (Ⅱ)若且,,求的取值范围. 解:(Ⅰ) …………………………………………2分 ,所以 因为,所以所以 …………………4分 由余弦定理知:,因, 所以由正弦定理知: 解得: …………………………………………6分 (Ⅱ)所以,所以 因为,所以 即 , 于是…8分 ,得 ……………………………10分 ∴ ,即 ………………………………………………12分 18.(本小题满分12分)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测。检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂。现随机抽取这两种产品各60件进行检测,检测结果统计如下: 得分 [60,70) [70,80) [80,90) [90,100] 甲 5 10 34 11 乙 8 12 31 9 (Ⅰ)试分别估计产品甲,乙下生产线时为合格品的概率; (Ⅱ)生产一件产品甲,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件产品乙,若是合格品可盈利90元,若是不合格品则亏损15元.在(Ⅰ)的前提下: (1)记为生产1件甲和1件乙所得的总利润,求随机变量的分布列和数学期望; (2)求生产5件乙所获得的利润不少于300元的概率. 解析:(Ⅰ)甲为合格品的概率约为:, 乙为合格品的概率约为:; ……………2分 (Ⅱ)(1)随机变量的所有取值为190,85,70,-35,而且 , , , ; 所以随机变量的分布列为: 190 85 70 -35 …………6分 所以: ……………8分 (2)设生产的 | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |