http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 教案 -> 高三数学教案 -> 下载
教案资源详情
资源名称 高中数学难点解析教案06 函数值域及求法
文件大小 48KB
所属分类 高三数学教案
授权方式 共享资源
级别评定
资源类型 教案
更新时间 2011-11-4 10:16:20
相关链接
资源登录 Ljez
资源审核 NYQ
文件类型 WinRAR 档案文件(*.rar)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:

高中数学难点解析

难点6 函数值域及求法

函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.

●难点磁场

(★★★★★)设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+).

(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M.

(2)当m∈M时,求函数f(x)的最小值.

(3)求证:对每个m∈M,函数f(x)的最小值都不小于1.

●案例探究

[例1]设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?

命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属★★★★★级题目.

知识依托:主要依据函数概念、奇偶性和最小值等基础知识.

错解分析:证明S(λ)在区间[]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.

技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.

解:设画面高为x cm,宽为λx cm,则λx2=4840,设纸张面积为S cm2,则S=(x+16)(λx+10)=λx2+(16λ+10)x+160,将x=代入上式得:S=5000+44 (8+),当8=,即λ=<1)时S取得最小值.此时高:x==88 cm,宽:λx=×88=55 cm.

如果λ∈[]可设≤λ1<λ2≤,则由S的表达式得:



又≥,故8->0,

∴S(λ1)-S(λ2)<0,∴S(λ)在区间[]内单调递增.

从而对于λ∈[],当λ=时,S(λ)取得最小值.

答:画面高为88 cm,宽为55 cm时,所用纸张面积最小.如果要求λ∈[],当λ=时,所用纸张面积最小.

[例2]已知函数f(x)=,x∈[1,+∞

(1)当a=时,求函数f(x)的最小值.

(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围.

命题意图:本题主要考查函数的最小值以及单调性问题,着重于学生的综

相关资源:
·5.4 线段的定比分点和平移_高三上数学教案
·8.7 圆锥曲线的综合问题_高考第一轮复习数学
·高中数学难点解析教案16 三角函数式的化简与求值
·2.6 反函数_高三上数学教案
·14 高三数学专题辅导(4) _高三数学复习专题
·16 高三数学专题辅导(6) _高三数学复习专题
·8.6 圆锥曲线的应用_高三上数学教案
·10.2 二项式定理_高三上数学教案
·2.8 对数与对数函数_高考第一轮复习数学
·9.7 空间向量的坐标运算_高三上数学教案  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号