http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 河北省正定中学2014-2015学年高二上学期期末考试数学试题
文件大小 323KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-4-14 13:34:46
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:



一.选择题(本大题共12个小题,每小题5分,共计60分。在每小题给出的四个选项中,只有一项是符合题目要求的).

1.设集合,,则 ( )

A.  B.  C.  D.

2.已知是虚数单位,和都是实数,且,则 ( )

A.    B.    C.    D.

3. 已知研究与之间关系的一组数据如下表所示,则对的回归直线方程

必过点( )

0

1

2

3





1

3

5

7





A. B.  C. D.

4. 一个棱锥的三视图如图所示,则这个棱锥的体积是 ( )

A.6 B.12 C.24 D.36

5.“实数”是“直线和直线 相互平行”的( )

A.充要条件 B.必要不充分条件

C.充分不必要条件 D.既不充分也不必要条件

6. 已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( )

A. B. C. D.

7. 已知各项为正的等比数列中,与的等比中项为,则的最小值

为( )

A.16 B.8 C. D.4

8. 执行右图所示的程序框图,若输入,则输出的值为

A.  B.  C.  D.

9. 若直线和⊙O∶相离,则过点的

直线与椭圆的交点个数为(  )

A. 至多一个   B. 2个    C. 1个   D. 0个

10.设满足约束条件,若目标函数的最大值为12,则的最小值为(  )

A. B. C. D.4

11. 过椭圆的左顶点A的斜率为的直线交椭圆于另一个点,且点在轴上的射影恰好为右焦点,若则椭圆离心率的取值范围是( )

A. B. C. D.

12. 若定义在R上的函数满足,且当时,,函数,则函数在区间内的零点的个数为( )

A.6 B. 7 C. 8 D. 9

二.填空题:(本大题共4小题,每题5分,共20分)

13.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出

人.

14.在内任取一个实数,设,则函数的图像与轴有公共点的概率等于 。

15. 已知函数,若存在,使得成立,则实数

的取值范围是 。

16.(1)“数列为等比数列”是“数列为等比数列”的充分不必要条件.

(2)“”是在区间上为增函数”的充要条件.

(3)已知命题,使得;,使得.则 是真命题.

(4)设分别是的内角的对边,若.则是的必要不充分条件.

其中真命题的序号是 (写出所有真命题的序号)

三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分10分)

已知为等比数列,其中,且成等差数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

18.(本小题满分12分)

在三角形中,.

(1)求角的大小;

(2)若,且,求的面积.

19. (本小题满分12分)

某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:

7

7

7.5

9

9.5





6



8.5

8.5





由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.

(1)求表格中与的值;

(2)若从被检测的5件B种元件中任取2件,求2件都为正品的概率.

20.(本小题满分12分)如图,棱锥中, 底面,底面是矩形,,.

(1)求证:平面⊥平面;

(2)在边上是否存在一点,使得点到平面的距离为2,

若存在,求的值,若不存在,请说明理由。

21.(本小题满分12分)已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.

(1)求抛物线方程及其焦点坐标;

(2)已知为原点,求证:为定值.

22. (本小题满分12分)设,函数.

(1)若函数的图象在处的切线与直线平行,求的值;

(2)若,求函数的极值与单调区间;

若函数的图象与直线有三个公共点,求的取值范围.



(2)因为,所以或.

当时,A=90°,则;(8分)

当时,由正弦定理得.

由,可知. (10分)

所以. (12分)

19.解:(1)因为,

且,所以.① …………2分

因为,

,且,

所以.② …………4分

由①②解得 , 因为,所以………6分

(2)记被检测的5件种元件分别为,其中为正品的是,从中任取2件,共有10个基本事件,列举如下:

;……………………8分

记“2件都为正品”为事件,则事件包含以下6个基本事件:……………10分

所以==,即2件都为正品的概率为……………………………12分

20.解(Ⅰ)证明:如图2,∵矩形中, ……………………………(2分)

又∵底面,且平面ABCD,∴.

又∵,∴平面PAD,……………………(4分)

又∵平面PDC,∴平面PDC⊥平面PAD.…………………………(6分)

(Ⅱ)解:如图3,假设边上存在一点满足题设条件,令,

∵矩形ABCD中AB=2,BC=4.且PA⊥底面ABCD,PA=2,

则在中,…………………………(6分)

∵PA⊥底面ABCD,,

. ………………………………(8分)

又∵,,解之.

故存在点M,当BM=时,使点D到平面PAM的距离为2.…………………(12分)

21.解:(Ⅰ)将代入,得 ………………2分

所以抛物线方程为,焦点坐标为 ………………4分

(Ⅱ)设,,,

直线的方程为:,即,

令,得 同理可得: ………………8分

又 ,



 ………10分

所以,即为定值 ………………12分

22.解:

(1),所以,此时,切点为,切线方程为,它与已知直线平行,符合题意. ……………2分

(2)时,,

当时,,当,或时,,

所以,的单调减区间为,单调增区间为和;………4分

当时,有极小值,

当时,有极大值…………………………………6分

(3)当时,,它与没有三个公共点,不符合题意………7分

当时,由知,

在和上单调递增,在上单调递减,

又,,所以,即,

又因为,所以;…………………………………………9分

当时,由知,

在和上单调递减,在上单调递增,

又,,所以,即,

又因为,所以;……………………………………………11分

综上所述,的取值范围是………………………………12分

::立即下载::
进入下载页面
下载出错
相关资源:
·河北省故城县高级中学2014-2015学年高二上学期期末考试数学理试题
·河北省故城县高级中学2014-2015学年高二上学期期末考试数学文试题
·河北省唐山市2014-2015学年高二上学期期末考试数学理试题
·河北省唐山市2014-2015学年高二上学期期末考试数学文试题
·河北省保定市高阳中学2014-2015学年高二上学期第二十四次周练数学试题
·河北省保定市高阳中学2014-2015学年高二上学期第二十三次周练数学试题
·江西省吉安市2014-2015学年高二上学期期末考试数学理试题
·江西省吉安市2014-2015学年高二上学期期末考试数学文试题
·江西省南昌市2014-2015学年高二上学期期末终结性测试数学理试题
·江西省南昌市2014-2015学年高二上学期期末终结性测试数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号