http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 浙江省慈溪中学2014届高三10月月考数学文试题
文件大小 485KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2013-10-28 20:12:53
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:



一、选择题:本大题共10小题,每小题5分,共50分

1.设全集,,,则图中阴影部分表示的集合

为( )

A. B. C. D.

2.如果复数 (其中)的实部与虚部互为相反数,则=( )

A. B. C. D. 1

3.设等比数列的公比为,前项和为,且。若,则的取值范围是( )

A. B.

C. D.

4.设,则“”是“”的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件     D.既不充分也不必要条件

5.我校要从4名男生和2名女生中选出2人担任禽流感防御

宣传工作,则在选出的宣传者中,男、女都有的概率为( )

A.  B. 

C.  D. 

6.根据右边的程序框图,若输入的实数,则输出的的值为( )

A. B.  C. D.

7.先将函数的图像向左平移个长度单位,再保持所有点的纵坐标不

变横坐标压缩为原的,得到函数的图像.则使为增函数的一个区间

是( )

A. B.  C.  D. 

8. 定义在上的函数,满足,,若且,则有( ).

A.  B. C. D.不能确定

9.已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为的圆相切,则双曲线的离心率为( )

A. B. C. D.

10.对两个实数,定义运算“”,.若点在第四象限,点在第一象限,当变动时动点形成的平面区域为,则使成立的的最大值为( )[来源:Zxxk.Com]

A. B. C.  D. 

二、填空题:本大题共7小题,每小题4分,共28分

11.已知,则=__________

12.若,则

13.如右图,在△OAB中,∠AOB=120°,OA=2,OB=1,C、D分别是线段OB和AB的中点,那么=_________

14.数列满足,且,是数列的前n项和。则=__________

15.设,其中满足约束条件,若的最小值,则k的值为___



三、解答题:本大题共5小题,共72分.

18.已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点.

(Ⅰ)求函数的解析式;

(Ⅱ)在中,角的对边分别为,且,求的取值范围.

19. 为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.

(1)求k的值及f(x)的表达式;

(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

20.已知公差不为零的等差数列的前项和,且成等比数列.[来源:学#科#网Z#X#X#K]

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,求的前项和.

21.已知函数,

(I)当时,求曲线在点处的切线方程;

(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.

22. 已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;

(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.



数学(文)答案

一、选择题:本大题共10小题,每小题5分,共50分



3.设等比数列的公比为,前项和为,且。若,则的取值范围是( B )

A. B.

C. D.

7.先将函数的图像向左平移个长度单位,再保持所有点的纵坐标不

变横坐标压缩为原的,得到函数的图像.则使为增函数的一个区间

是( D )

A. B.  C.  D. 

8. 定义在上的函数,满足,,若且,则有(A ).

A.  B. C. D.不能确定

9.已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为的圆相切,则双曲线的离心率为( A )

A. B. C. D.

10.对两个实数,定义运算“”,.若点在第四象限,点在第一象限,当变动时动点形成的平面区域为,则使成立的的最大值为( C )

A. B. C.  D. 

二、填空题:本大题共7小题,每小题4分,共28分

11.已知,则=_____0_____

12.若,则  ;

13.如右图,在△OAB中,∠AOB=120°,OA=2,OB=1,C、D分别是线段OB和AB的中点,那么=_________-

14.数列满足,且,是数列的前n项和。则=____6______

15.设,其中满足约束条件,若的最小值,则k的值为___ 1

16. 定义:如果函数在区间上存在,满足,则称是函数在区间上的一个均值点。已知函数在区间上存在均值点,则实数的取值范围是  。

17.已知定义在R上的偶函数f(x)满足:?x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,f(x)=-2(x-3)2.若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为___________

三、解答题:本大题共5小题,共72分.



19. 为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.

(1)求k的值及f(x)的表达式;

(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

解析:(1)当x=0时,C(0)=8,即=8,所以k=40,

所以C(x)=,[来源:学|科|网][来源:学+科+网]

所以f(x)=6x+=6x+(0≤x≤10). …6分

(2)f(x)=2(3x+5)+-10

≥2-10

=70,

当且仅当2(3x+5)=,即x=5时,等号成立,因此最小值为70,…14分

所以,当隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.

20. 解(Ⅰ) 由已知得:



因为  所以 

所以 ,所以 

所以  ┈┈┈┈┈┈┈┈┈┈┈┈ 6分



21.已知函数,

(I)当时,求曲线在点处的切线方程;[来源:Zxxk.Com]

(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.

21. 解:(I)当时,,, …………………2分

曲线在点 处的切线斜率,

所以曲线在点处的切线方程为. …………6分

解2:有已知得:, ………………8分

设,, ……………10分

,,所以在上是减函数. ……………12分

,

故的取值范围为 …………………………………………15分

22. 已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;

(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

22. 解(Ⅰ) 设抛物线方程为,

由已知得: 所以 

所以抛物线的标准方程为 

相关资源:
·浙江省宁海县正学中学2014届高三上学期第一次阶段性测试数学试题
·浙江省乐清市白象中学2014届高三上学期第二次月考 数学(理)
·浙江省乐清市白象中学2014届高三上学期第二次月考 数学(文)
·河南省扶沟高级中学2014届高三第三次考试数学(理)试题
·河南省扶沟高级中学2014届高三第三次考试数学(文)试题
·江西省宜春市上高二中2014届高三上学期第二次月考数学理试题
·江西省宜春市上高二中2014届高三上学期第二次月考数学文试题
·江西省吉安市吉水中学2014届高三第三次考试数学(理)试题
·江西省吉安市吉水中学2014届高三第三次考试数学(文)试题
·江西省南昌大学附属中学2014届高三第三次月考数学理试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号