设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
绝密★启用前 2015年高考桂林市、防城港市联合调研考试 数学试卷(理科) 第Ⅰ卷 一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,,则等于( ) A. B. C. D. 2. 已知复数是关于的方程的解,则等于( ) A. B. C. D. 3. 函数的最小正周期是( ) A. B. C. D. 4. 已知,,,则( ) A. B. C. D. 5. 已知,,分别为的三个内角、、的对边,若,,,则角等于( ) A.或 B. C. D. 6. 一个几何体的三视图如右图所示,则这个几何体的体积等于( ) A.4 B.6 C.8 D.12 若双曲线与直线无交点, 则的取值范围是( ) A. B. C. D. 8. 设,满足约束条件则的取值范围为( ) A. B. C. D. 9. 将6名教师4名学生平均分成2个小组(每个小组的学生数相同),分别安排到甲、乙两地参加社会实践活动,则不同的安排方案的众数为( ) A.40 B.60 C.120 D.240 已知实数,若执行如右图所示的程序框图, 则输出的不小于55的概率为( ) A. B. C. D. 体积为的三棱锥的所有顶点都在球的球面上, 已知是边长为1的正三角形,为球的直径,则 球的表面积为( ) A. B. C. D. 12. 已知,,为自然对数的底数,则的最小值为( ) A. B. C. D. 第Ⅱ卷 本卷包括必考题和选考题两部分。第13题第21题为必考题,每个试题考生都必须作答,第22题第24题为选考题,请考生根据要求做答。 二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知非零向量,的夹角为,且=2,则 14. 展开式中的常数项是__________ 15.等差数列的前项和为,且,是方程的两个根,则的最大值为 . 16. 设,分别是椭圆的左、右焦点,与直线相切的交椭圆于点,且是直线与的切点,则椭圆的离心率为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在等差数列中,已知,且成等比数列. (1)求; (2)设,求数列的前项和. 18.(本小题满分12分) 为了解某校高三毕业班准备报考飞行员学生的体重情况(体重都 以整数计),将所得的数据整理后,画出了频率分布直方图(如图) 已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组 的频数为12. 求该校报考飞行员的总人数; 以这所学校的样本数据来估计全省的总体数据,若从全省 报考飞行员的同学中(人数很多)任选3人,设表示体重超过60 公斤的学生人数,求的分布列和数学期望. 19.(本小题满分12分) 如图,在直三棱柱中,,是棱的中点,. (1)证明:; (2)求二面角的余弦值. 20. (本小题满分12分) 已知抛物线的焦点为,直线与交于、两点,与轴交于点,且. (1)求抛物线的方程; (2)当时,设在点处的切线与直线、轴依次交于、两点,以为直径作圆,过作圆的切线,切点为,试探究:当点在上移动(与原点不重合)时,线段的长度是否为定值? 21.(本小题满分12分) 设函数 (1)当时,讨论的单调性; (2)当,为奇数时,设,数列的前项和为,试比较,,的大小. 请考生在第(22),(23),(24)题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。 (本小题满分10分)选修41:几何证明选讲 如图,分别为边,的中点,直线交的外接圆,若. (1); (2). (本小题满分10分)选修44:坐标系与参数方程 已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,且依次逆时针次序排列,点的极坐标为. (1)写出四点的直角坐标; 设为上的任意一点,求的取值范围. (本小题满分10分)选修45:不等式选讲 已知函数. (1)当时,求不等式的解集; 若的解集满足,求的取值范围. 参考答案 欢迎访问“高中试卷网”——http://sj.fjjy.org | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||