设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合M={1,2,zi},i,为虚数单位,N={3,4},则复数z=( ) A.-2i B.2i C.-4i D.4i 2..已知集合,则 ( ) A. A∩B=( B. A∪B=R C. B?A D. A?B 3.函数y=ln(1-x)的定义域为( ) A.(0,1) B.[0,1) C.(0,1] D.[0,1] 4. “” 是“函数在区间上为增函数”的 ( ) A.充分条件不必要 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.若则的大小关系为( ) A. B. C. D. 6.如右图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间函数关系的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( ) 7. 设,是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且=4+2,=3+4,则△OAB的面积等于 ( ) A.15 B.10 C. 7.5 D.5 8.将函数y=sinωx(ω>0)的图象向左平移个单位长度,平移后的部分图象如图G5-1所示,则平移后的图象 图G5-1 所对应函数的解析式是( ) A.y=sin B.y=sin C.y=sin D.y=sin 9.定义在R上的偶函数满足,且在[-3,-2]上是减函数,是钝角三角形的两个锐角,则下列不等式关系中正确的是( ) A. B. C. D. 10.已知函数,若||≥,则的取值范围是( ) A. B. C. D. 二、填空题:5小题,每小题4分,共20分,把答案填在相应的位置上. 11.命题:“”的否定是________. 12.若,则________. 13.已知正方形的边长为,为的中点,则_______. 14.设sin 2α=-sin α,α∈,则tan 2α的值是________. 15.定义:若平面点集A中的任一个点(xo,yo),总存在正实数r,使得 集合B=,则称A为一个开集.给出下列集合: ① ; ②{(x,y)|x+y+2>o}; ③ ; ④. 其中是开集的是____ 。(请写出所有符合条件的序号) 三、解答题:本大题六个小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16、(本小题满分13分)已知:全集,函数的定义域为集合,集合 (1)求; (2)若,求实数的范围. 17、(本小题满分13分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知(1)求角B的大小; 若a+c=1,求b的取值范围 18、(本小题满分13分) 某飞机制造公司一年中最多可生产某种型号的飞机100架。已知制造x架该种飞机的产值函数为R(x)=3000x-20x2 (单位:万元),成本函数 C(x)=500x+4000 (单位:万元)。利润是收入与成本之差,又在经济学中,函数((x)的边际利润函数M((x)定义为:Mf(x)=((x+1)-((x). ①求利润函数P(x)及边际利润函数MP(x);(利润=产值-成本) ②问该公司的利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值? 19、(本小题满分13分) 已知向量=,,向量=(,-1) (1)若,求的值(; (2)若恒成立,求实数的取值范围。 20、(本小题满分14分)已知函数f(x)=-. (1)若函数f(x)在[0,+∞)内为增函数,求正实数a的取值范围; (2)当a=1时,求f(x)在[-,1]上的最大值和最小值; (3)试利用(1)的结论,证明:对于大于1的任意正整数n,都有+++…+ 21、本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。 (1)选修4-2:矩阵与变换 已知,若矩阵所对应的变换把直线:变换为自身,求. (2) 选修4—4:坐标系与参数方程 已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为。 (Ⅰ)把C1的参数方程化为极坐标方程; (Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||