http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高一数学试卷 -> 下载
试卷资源详情
资源名称 北京市西城区(北区)2012-2013学年高一下学期期末考试数学试题
文件大小 257KB
所属分类 高一数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2013-8-20 8:45:45
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:

北京市西城区(北区)2012-2013学年下学期高一期末考试

数学试卷

试卷满分:150分 考试时间:120分钟

一、本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合要求的。

1. 在数列中,,且,则等于( )

(A)8 (B)6 (C)9 (D)7

2. 将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是

( )

(A) (B) (C) (D)

3. 在△ABC中,若,则△ABC的形状是( )

(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定

4. 若,则下列不等式中成立的是( )

(A) (B) (C) (D)

5. 若实数x,y满足则的最小值是( )

(A) (B)0 (C)1 (D)-1

6. 执行如图所示的程序框图,输出s的值为( )



(A)2

(B)

(C)3

(D)

7. 已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )

(A)B与C互斥 (B)A与C互斥

(C)任意两个事件均互斥 (D)任意两个事件均不互斥

8. 口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次。则“两次取球中有3号球”的概率为( )

(A) (B) (C) (D)

9. 设O为坐标原点,点A(4,3),B是x正半轴上一点,则△OAB中的最大值为( )

(A) (B) (C) (D)

10. 对于项数为m的数列和,记bk为中的最小值。给出下列判断:

①若数列的前5项是5,5,3,3,1,则;

②若数列是递减数列,则数列也一定是递减数列;

③数列可能是先减后增数列;

④若,C为常数,则。

其中,正确判断的序号是( )

(A)①③ (B)②④ (C)②③ (D)②

二、填空题:本大题共6小题,每小题5分,共30分。把答案填在题中横线上。

11. 不等式的解集为________________。

12. 在△ABC中,,则a=___________。

13. 某校高一年级三个班共有学生120名,这三个班的男、女生人数如下表。

已知在全年级学生中随机抽取1人,抽到二班女生的概率是0.2。则x=_____;现用分层抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为____________。

一班

二班

三班



女生人数

20

x

y



男生人数

20

20

z



14. 甲、乙两人各参加了5次测试,将他们在各次测试中的得分绘制成如图所示的茎叶图。已知甲、乙二人得分的平均数相等,则m=________;乙得分的方差等于____。



15. 设是等差数列,Sn为其前n项的和。若,则_______;

当Sn取得最小值时,n=__________。

16. 当x∈[1,9]时,不等式恒成立,则k的取值范围是_________。

三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分13分)

在等比数列中,。

(Ⅰ)求数列的通项公式;

(Ⅱ)设是等差数列,且b2 =a2,b4=a4。求数列的公差,并计算的值。

18. (本小题满分13分)

某市某年一个月中30天对空气质量指数的监测数据如下:

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(Ⅰ)完成下面的频率分布表;

(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;

(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率。

分组

频数

频率



[41,51)

2





[51,61)

3





[61,71)

4





[71,81)

6





[81,91)







[91,101)







[101,111)

2







19. (本小题满分13分)

在△ABC中,a,b,c分别为角A,B,C所对的边,已知c=3,。

(Ⅰ)若sinB=2sinA,求a,b的值;

(Ⅱ)求a2+b2的最大值。

20. (本小题满分14分)

已知函数。

(Ⅰ)当a=1时,求在区间[-1,2]上的值域;

(Ⅱ)若函数在区间上是减函数,求a的取值范围;

(Ⅲ)解关于x的不等式。

21. (本小题满分14分)

设数列的前n项和为Sn,且。

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列。

(i)求数列的前n项和Tn;

(ii)求bn的最大值。

22. (本小题满分13分)

对于数列A:a1,a2,a3(ai∈N,i=1,2,3),定义“T变换”:T将数列A变换成数列B:b1,b2,b3,其中,且。这种“T变换”记作B=T(A),继续对数列B进行“T变换”,得到数列C:cl,c2,c3,依此类推,当得到的数列各项均为0时变换结束。

(Ⅰ)写出数列A:2,6,4经过5次“T变换”后得到的数列;

(Ⅱ)若a1,a2,a3不全相等,判断数列A:a1,a2,a3经过不断的“T变换”是否会结束,并说明理由;

(Ⅲ)设数列A:400,2,403经过k次“T变换”得到的数列各项之和最小,求k的最小值。

【试题答案】

一、选择题:本大题共10小题,每小题4分,共40分。

1. D 2. B 3. C 4. C 5. A 6. D 7. B 8. A 9. B 10. B

二、填空题:本大题共6小题,每小题5分,共30分,

11.  12.  13. 24 9

14. 6,8.4 15. -11,6 16. 

注:一题两空的试题,第一空2分,第二空3分:

三、解答题:本大题共3小题,共36分,

17. 解:(Ⅰ)设等比数列的公比为q,

由已知, …………2分

两式相除,得q=2。 …………4分

所以a1=2, …………6分

所以数列的通项公式。 …………7分

(Ⅱ)设等差数列的公差为d,

则 ………………9分

解得………………11分

………………12分

…………13分

18. 解:(Ⅰ)如下图所示。 ……………………4分

(Ⅱ)如下图所示。………………6分

由己知,空气质量指数在区间[71,81)的频率为,所以a= 0.02。……8分

分组

频数

频率



…

…

…



[81,91)

10





[91,101)

3





…

…

…





(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,

由己知,质量指数在区间[91,101)内的有3天,

记这三天分别为a,b,c,

质量指数在区间[101,111)内的有2天,

记这两天分别为d,e,

则选取的所有可能结果为:

(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)。

基本事件数为10。………………10分

事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:

(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e)。

基本事件数为7, ………………12分

所以 ………………13分

19. 解:(Ⅰ)因为sin B=2sinA,由正弦定理可得b=2a,………………3分

由余弦定理c2= a2 +b2 -2abcosC, ………………5分

得9=a2 +4a2 -2a2, ………………7分

解得a2=3, ………………8分

所以 ………………9分

(Ⅱ)由余弦定理c2= a2 +b2 -2abcosC,得ab=a2+b2-9,………………10分

又a2 +b2≥2ab, ………………11分

所以a2+b2≤18,当且仅当a=b时,等号成立。 ………………12分

所以a2+b2的最大值为18。 ………………13分

20. 解:(Ⅰ)当a=l时,,

函数在区间上单调递减,在区间上单调递增

所以,在区间上的最小值为…………2分

又。

所以在区间上的最大值为…………………3分

在区间上的值域为…………………4分

(Ⅱ)当a=0时,,在区间上是减函数,符合题意……5分

当时,若函数在区间上是减函数,

则,且, ……………………7分

所以-1≤a<0, ……………………9分

所以a的取值范围是[-1,0]

(Ⅲ)由已知,解不等式。

当a=0时,x>-1。 ……………………10分

当a>0时,,解得 ………………11分

当a<0时,,

若,即时,; ………………12分

若,即时,或 ………………13分

若,即时,或 ………………14分

综上,当a>0时,不等式的解集为;

当a=0时,不等式的解集为;

当-1

当a =-1时,不等式的解集为

当a<-1时,不等式的解集为

21. 解:(Ⅰ)由已知,当n=1时,。………………1分

当时, ………………2分

 ………………3分

综上, ………………4分

(Ⅱ)(i)

所以………………5分

 ……6分

两式相减,得…8分





所以 ………………10分

(ii)因为……11分

令,得 ………………12分

所以,且,即最大, ………………13分

又。

所以,的最大值为 ………………14分

22. 解:(Ⅰ)依题意,5次变换后得到的数列依次为

4,2,2;2,0,2;2,2,0;0,2,2;2,0,2…………3分

所以,数列A:2,6,4经过5次“T变换”后得到的数列为2,0,2,……4分

(Ⅱ)数列A经过不断的“T变换”不可能结束

设数列D:d1,d2,d3,E:e1,e2,e3,F:O,0,0,且T(D)=E,T(E)=F

依题意,所以

即非零常数列才能通过“T变换”结束。…………①…………6分

设(e为非零自然数)。

为变换得到数列E的前两项,数列D只有四种可能



而任何一种可能中,数列E的笫三项是O或2e。

即不存在数列D,使得其经过“T变换”成为非零常数列。……②……8分

由①②得,数列A经过不断的“T变换”不可能结束。

(Ⅲ)数列A经过一次“T变换”后得到数列B:398,401,3,其结构为a,a+3,3。

数列B经过6次“T变换”得到的数列分别为:3,a,a-3;a-3,3,a-6:a-6,a-9,3;3,a-12,a-9;a-15,3,a-12;a-18,a-15,3。

所以,经过6次“T变换”后得到的数列也是形如“a,a+3,3”的数列,变化的是,除了3之外的两项均减小18。 ……10分

因为398 =18×22+2,所以,数列B经过6×22 =132次“T变换”后得到的数列为2,5,3。

接下来经过“T变换”后得到的数列分别为:3,2,1;1,1,2;0,1,1;1,0,1;1,1,0;0,1,1;1,0,1,……。

至此,数列和的最小值为2,以后数列循环出现,数列各项和不会更小。……12分

所以经过1+132+3 =136次“T变换”得到的数列各项和达到最小,

即k的最小值为136。 ………………13分

相关资源:
·【新课标版】2013-2014学年高一上学期期末考试 数学
·【新课标版】2013-2014学年高一上学期期中考试 数学
·高一人教A版数学必修二同步练习 1.2.1-1.2.2中心投影与平行投影
·高一人教A版数学必修二同步练习 1.1.2旋转体与简单组合体的结构特征
·高一人教A版数学必修二同步练习 1.1.1多面体的结构特征
·辽宁省沈阳铁路实验中学2012-2013学年高一下学期期末考试数学试题
·江西省安福中学2012-2013学年高一下学期第二次月考数学理试题
·江西省南昌二中2012-2013学年高一下学期第一次月考数学试题
·新课标2013-2014学年高一上学期第一次月考数学试题
·广东省广州市海珠区2012-2013学年高一下学期期末考试数学试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号