设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
腾五中2014-2015学年上学期期末考试试题高二数学(文科卷) (考试时间:120分钟) 一、选择题:本大题共12个小题. 每小题5分;共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1、已知命题:,,那么命题为 ( ) A., B., C., D., 2、椭圆上有一点P到左焦点的距离是4,则点p到右焦点的距离是( ) A、3 B、4 C、5 D、6 3、函数的零点所在的大致区间是 ( ) A. B . C. 和 D. 4、如下图,该程序运行后输出的结果为( ) A . 7 B .15 C. 31 D. 63 5. △ABC中,若sin2A=sin2B+sin2C,则△ABC为( ) A.直角三角形 B. 钝三角形 C.锐角三角形 D.锐角或直角三角形 6、一个几何体的三视图如图,其中正视图中△是边长为的正三角形,俯视图 为正六边形,则侧视图的面积为( ) A . B . C. D. 7、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下,根据上图可得这100名学生中体重在 〔56.5,64.5〕的学生人数是( ) A .20 B.30 C.40 D.50 8、若不等式 恒成立,则的取值范围是 ( ) A. B. C.或 D. 或 9、设 且,则的最小值为 ( ) A.12 B.15 C.16 D.-16 10、设F1、F2为椭圆+y2=1的两焦点,P在椭圆上,当△F1PF2面积为1时, 的值为( ) A.0 B.1 C.2 D.
11、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( ) A. B. 16 C. 9 D. 12、奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(1)=1,则f(8)+f(9)= ( ) A. -2 B.-1 C. 0 D. 1 第Ⅱ卷(非选择题 共90分) 二.填空题:本大题共4个小题.每小题4分;共16分. 13. 已知椭圆长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是 . 14.已知变量x,y满足约束条件,则z=2x+y的最大值为 . 15.等差数列中,已知,试求n的值 16.已知,且//(),则k=______. 三.解答题:本大题共6个小题. 共70分.解答应写出文字说明,证明过程或演算步骤 17.(文科做)已知函数( ),若从集合中任取一个元素,从集合中任取一个元素,求方程恰有两个不相等实根的概率. 18.某体育用品商场经营一批每件进价为40元的运动服,先做了市场调查,得到数据如下表: 销售单价x(元) 60 62 64 66 68 … 销售量y(件) 600 580 560 540 520 … 根据表中数据,解答下列问题: ⑴ 建立一个恰当的函数模型,使它能较好地反映销售量y(件)与销售单价x(元)之间的函数关系,并写出这个函数模型的解析式; ⑵ 试求销售利润z(元)与销售单价x(元)之间的函数关系式(销售利润 = 总销售收入 - 总进价成本)并求价格为多少利润最大? 19、(10分)已知等差数列{}满足: (1)求{}的通项公式; (2)若,求数列{}的前n项和. 20.(本题满分12分) 在中,是三角形的三内角,是三内角对应的三边,已知. (1)求角的大小; (2)若=,且△ABC的面积为,求的值 21.已知椭圆的左右焦点坐标分别是,离心率,经过P(1,1)的直线L与椭圆交于不同的两点. (1)求椭圆的方程; (2)若点P为弦的中点,求直线L的方程及弦的长度 22. 已知;; 若是的必要非充分条件,求实数的取值范围. | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||