http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 安徽省泗县双语中学2014届高三9月摸底测试数学理试题
文件大小 316KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2013-9-25 10:54:24
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:

泗县双语中学2014届高三9月摸底测试试题

数学理试卷

第Ⅰ卷(选择题 共50分)

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R,集合=

A. B. C.{0,2} D.

2.函数的定义域是

A.(0,2) B.(0,1)∪(1,2)

C. D.(0,1)∪

3.若函数=

A.0 B.1 C.2 D.

4.设则“函数在R上是增函数”是“函数在R上是增函数”的

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

5.函数的图像为



6.设的大小关系是

A. B. C. D.

7.若函数,则实数m的取值范围是

A. B. C. D.

8.已知集合,则B中所含元素的个数为

A.3 B.6 C.8 D.10

9.若函数的最小值为0,则=

A.2 B. C. D.

10.若曲线处的切线与两坐标轴围成的三角形的面积为9,则a=

A.8 B.16 C.32 D.64

第Ⅱ卷(非选择题,共100分)

考生注意事项:

请用0.5毫米黑色墨水签字笔在答题卡上作答,在试卷上作答无效。

二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

11.命题“”的否定为 。

12.安徽省自2012年7月起执行阶梯电价,

收费标准如图所示,小王家今年8月份

一共用电410度,则应缴纳电费为 元

(结果保留一位小数).

13.要使函数的图像不经过第一象限,则实数m的取值范围是 .

14.已知定义在R上的函数满足:

=

15.若二次函数的图象和直线y=x无交点,现有下列结论:

①方程一定没有实数根;

②若a>0,则不等式对一切实数x都成立;

③若a<0,则必存存在实数x0,使;

④若,则不等式对一切实数都成立;

⑤函数的图像与直线也一定没有交点。

其中正确的结论是 (写出所有正确结论的编号).

三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

设不等式的解集为集合A,关于x的不等式的解集为集合B。

(I)若,求实数a的取值范围;

(II)若,求实数a的取值范围。

17.(本小题满分13分)

已知函数“的定义域为R”;命题q:“的值域为R”

(I)若命题p为真,求实数a的取值范围;

(I)若命题q为真,求实数a的取值范围;

(I)的什么条件?请说明理由。

18.(本小题满分13分)

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益。现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%。

(I)建立奖励方案的函数模型,试用数学语言表述公司对奖励方案的函数模型的基本要求。

(II)现有两个奖励方案的函数模型:

①;②

试分析这两个函数模型是否符合公司要求。

19.(本小题满分12分)

设函数

(I)当时,判断的奇偶性并给予证明;

(II)若在上单调递增,求k的取值范围。

20.(本小题满分13分)

已知函数处的切线方程为

(I)求的解析式;

(II)设函数恒成立。

21.(本小题满分12分)

设函数

(I)当上的单调性;

(II)讨论的极值点。

参考答案

一、选择题(本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)

题号

1

2

3

4

5

6

7

8

9

10



答案

C

D

C

D

C

A

D

C

C

B







2.D 【解析】要使函数f(x)有意义,只需要, 解得,所以定义域为.

3.C 【解析】,所以.

4.D 【解析】当时,函数在R上为增函数,函数在R上不是增函数;当时,在上是增函数,在上不是增函数.



8. C 【解析】当时,;当时,;当时,;当时,.共有8个元素.

9.C 【解析】因为函数的最小值为,所以,,则.

10.B 【解析】,所以在点处的切线方程为:

,

令,得;令,得.

所以切线与两坐标轴围成的三角形的面积 ,解得.

二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置)

11.

【解析】特称命题的否定是全称命题,“存在”对应“任意”.

12.

【解析】

13.

【解析】函数的图像是的图像向右平移个单位得到,如果不经过第一象限,则至少向左平移1个单位(即向右平移个单位),所以.

14.

【解析】令,得,记;

令,得,;

因此 

函数是周期为6的函数,所以.

15.①②④⑤

 【解析】因为函数的图像与直线没有交点,所以或恒成立.

三、解答题(本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤)

16.解:由题意,集合  ………………2分

集合 ………5分

(Ⅰ)若,则可得 .

所以时,关系式 成立 . …………………………8分

(Ⅱ)要满足,应满足或,所以或

综上所述,或 时, ……………………………12分

17. 解:(Ⅰ)命题为真,即的定义域是,等价于恒成立, …………………2分

等价于或 …………………3分

解得或.∴实数的取值范围为,,.……………5分

(Ⅱ)命题为真,即的值域是,

等价于的值域, ……………6分

等价于或………………………………8分

解得.∴实数的取值范围为,.…………………10分

(Ⅲ)由(Ⅰ)(Ⅱ)知,:;:.

而,∴是的必要而不充分的条件.……………………13分

18.解:(Ⅰ)设奖励方案函数模型为y=f(x),则公司对函数模型的基本要求是:

当时,①是增函数;②恒成立;③恒成立…3分

(Ⅱ)①对于函数模型:

当时,是增函数,则. ∴恒成立.

∵函数在上是减函数,所以.

∴不恒成立.故该函数模型不符合公司要求. ……8分

②对于函数模型:

当时,是增函数,则.

∴恒成立.

设,则.

当时,,所以在上是减函数,

从而.∴,即,∴恒成立.

故该函数模型符合公司要求. ……13分

19.解:(Ⅰ)当时,函数,

定义域为,关于原点对称. ………2分

且.

所以,

即.

所以当时,函数的奇函数. ……6分

(Ⅱ)因为是增函数,

所以由题意,在上是增函数,且在上恒成立. ……………8分

即对于恒成立且 ……………10分

所以 ,解得.

所以的取值范围是. ……………12分

20.(Ⅰ)解:将代入切线方程得 , ………………… 2分

又,化简得. ……………………4分

,

. ………………………… 6分

解得:;所以. …………………… 8分

(Ⅱ)证明:要证在上恒成立,

即证在上恒成立,

即证在上恒成立 .…………………… 10分

设,

∵,∴,即.……………………12分

∴在上单调递增,

∴在上恒成立 . ………………………………13分



当时,由(Ⅰ)知,

在上的单调递增,故无极值点.………………………6分

当时,由解得,

又

所以当或时,

;

当时,

; ………………………8分

因此在上单减,

在和上单增, ………………10分

因此为极大值点,为极小值点.……11分

综上所述,

当时,为极大值点,为极

相关资源:
·安徽省泗县双语中学2014届高三9月摸底测试数学文试题
·宁夏银川二中2013届高三第一次月考数学理试题
·宁夏银川二中2013届高三第一次月考数学文试题
·吉林省通化市第一中学2014届高三第一次月考数学理试题(B卷,无答案)
·吉林省通化市第一中学2014届高三第一次月考数学理试题(A卷,无答案)
·吉林省通化市第一中学2014届高三第一次月考数学文试题
·吉林省舒兰市第一中学2014届高三上学期第一次月考数学理试题
·吉林省舒兰市第一中学2014届高三上学期第一次月考数学文试题
·福建省安溪一中、德化一中2014届高三摸底联考数学文试题
·河南省郑州市中牟一高2014届高三周考数学(文)试题四  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号