设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| 简介:
(考试时间:120分钟;满分:150分) 命题:陈惠彬 审题:邱形贵 第Ⅰ卷(选择题 共60分) 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡的相应位置.) 1.若,则是( ) A. 第二象限角 B. 第三象限角 C. 第一或第三象限角 D. 第二或第三象限角 2.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为( ) A . 4 B. 6 C.8 D . 16 3.在中,,.若点满足,则( ) A. B. C. D. 4.设=(,),=(,),且// ,则锐角为 ( ) A.30o B.60o C.45o D.75o 5.如右图,是由三个边长为1的正方形拼成的矩形,且,, 则的值为 ( ) A. B. C. D. 6.函数的图象可由函数的图象做如下变换得到( ) A.向右平移 B.向左平移 C.向右平移 D.向左平移 7.已知||=1,||=2,(-),则与的夹角是( ) A.300 B.1500 C.600 D.1200 8.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则等于 ( ) A. (-2,-4) B. (-3,-5) C. (3,5) D. (2,4) 9.函数的部分图象大致是图中的 ( ) 10.已知函数,下列结论中正确的是( ) A.函数的最小正周期为 ; B.函数的图象关于直线对称; C.函数的图象关于点()对称; D.函数内是增函数. 11.在中,若,则一定是 ( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定 12.已知奇函数在上为减函数,又为锐角三角形的两内角, 则下列不等式恒成立的是( ) A. B. C. D. 第Ⅱ卷 (非选择题 共90分) 二、填空题:(本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.) 13.已知,且,则___________. 14. 已知单位向量,的夹角为,那么 . 15.已知角的终边过点,则= . 16.在矩形中,,,为矩形内一点,且. 若,则的最大值为 . 三.解答题:(本大题共6小题,共74分.解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤.) 17.(本小题12分)已知向量=(6,2),=(-3,). (Ⅰ)若∥,求实数的值; (Ⅱ)若⊥,求| -|; (Ⅲ)若与的夹角是钝角,求实数的取值范围. 18.(本小题12分)已知函数,. (Ⅰ)求函数的最小正周期和单调递增区间; (Ⅱ)求函数在区间上的最小值和最大值,并求出取得最值时相应的的值. 19.(本小题12分)在平行四边形中,已知,,、分别是边和上的点,满足 ,. (Ⅰ)分别用,表示向量,; (Ⅱ)若=+,其中,R,求出的值. 20.(本小题12分)如图是单位圆上的动点,且分别在第一,二象限.是圆与轴正半轴的交点,为正三角形. 若点的坐标为. 记. (Ⅰ)若点的坐标为,求的值; (Ⅱ)求的取值范围. 21.(本小题12分)已知向量. (Ⅰ)求的值; (Ⅱ)若,,且,求. 22.(本小题14分)已知函数的图象与x轴 交点为,相邻最高点坐标为. (Ⅰ)求函数的表达式; (Ⅱ)若函数满足方程,求在内的所有实数根之和; (Ⅲ)把函数的图像的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图像。若对任意的,方程在区间上至多有一个解,求正数的取值范围. 所以,的值为-1; …………………………………………2分 (Ⅱ)⊥,解得 ………………4分 -=(9,-7),所以,| -|=……………………………6分 (Ⅲ) 由第(1)题知,当时,…………………………………………8分 又由得……………………………………10分 故所求的取值范围是.………………………………………12分 18.(本小题12分)已知函数,.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)求函数在区间上的最小值和最大值,并求出取得最值时的值. 得,∵,不共线,∴解得:………12分 20.(本小题12分)如图是单位圆上的动点,且分别在第一,二象限.是圆与轴正半轴的交点,为正三角形. 若点的坐标为. 记. (Ⅰ)若点的坐标为,求的值; (Ⅱ)求的取值范围. 解:(Ⅰ)因为A点的坐标为,根据三角函数定义可知, ∴sin= sin[(–) +] = sin (–) cos+ cos (–)sin= ……………12分 22.(本小题14分)已知函数的图象与x轴交点为,相邻最高点坐标为. (Ⅰ)求函数的表达式;
| ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||