┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
简介:
选择题(每题4分,共10小题,共计40分) 1.已知全集,集合,,则 A. B. C. D. 2.已知直线的方程是x+y-1=0,则直线的倾斜角为 A. B. C. D. 3.正方体中,异面直线与所成角为 A. B. C. D. 4.函数的零点所在的区间为 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 5.已知两条直线(2+a)x-y+1=0和y=ax-2互相垂直,则a的值是 A. -1 B. -2 C. 0 D.1 6.若,则 A. B. C. D. 7.某几何体的三视图如图所示,则它的体积为 A. B.8- C.8- D. 8.已知是奇函数,是偶函数,且,,则 A.4 B.3 C.2 D.1 9.古希腊数学家阿基米德墓碑上刻着一个圆柱,圆柱内有一个球,这个球“顶天立地,四周碰边”,即这个球的直径等于圆柱的底面直径和圆柱的高,相传这个图形是阿基米德生前最引以自豪的发现.我们来重温这个伟大发现,球的体积与圆柱的体积之比和球的表面积与圆柱的表面积之比分别是 A., B., C., D.,1 10.正方体中,直线与平面所成角的余弦值为 A. B. C. D. 二、填空题(每题4分,共5小题,共计20分) 11.函数的定义域为___________________________.(用区间表示) 12.已知、是直线,是平面,给出下列命题: (1)若,则平行于内的所有直线; (2)若,,则; (3)若,且,则; (4)若且,则; (5)若,且,则. 其中正确的命题的序号是___________________________. 13.直线过点(3,-2)且与直线5x-4y+3=0垂直,则直线的方程是_____________________________.(结果用直线方程的一般式表示) 14.设四面体ABCD的棱长为4cm,M是棱AD的中点,过BM作 平行于AC的截面交棱CD于点N,则该截面BMN的面积等于________ 15.四边形ABCD是矩形,PD平面ABCD,AD=,DC=1, PC与平面ABCD成,则平面ABP与平面PCD所成的角为________ . 三、解答题(16题8分,17题10分,18题10分,19题12分,共计40分,请写出必要的解答过程) 16.已知直线的方程为,直线过点(3,-1),且与平行. (1)求直线的方程.(结果用直线方程的一般式表示) (2)求直线与之间的距离. 17.如图所示,在长方体中,,点E为AB中点. (1)证明:平面. (2)证明:平面. 18.已知定义域为的函数是奇函数. (1)求的值; (2)用定义证明在(-)上为减函数; (3)若对于任意,不等式f()+f()恒成立,求的取值范围. 19.如图所示,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面于圆O所在平面垂直,且D,DCBC,DE=BC=2,AC=CD=3. (1)证明:OE平面ACD. (2)证明:平面ACD平面BCDE. (3)求三棱锥E-ABD的体积. 数学答题卡 选择题(每题4分,共10小题,共计40分) 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题(每题4分,共5小题,共计20分) 11 12 13 14 15 三、解答题(16题8分,17题10分,18题10分,19题12分,共计40分,请写出必要的解答过程) 16.已知直线的方程为,直线过点(3,-1),且与平行. (1)求直线的方程.(结果用直线方程的一般式表示) (2)求直线与之间的距离. 17.如图所示,在长方体中,,点E为AB中点. (1)证明:平面. (2)证明:平面. 18.已知定义域为的函数是奇函数. (1)求的值; (2)用定义证明在(-)上为减函数; (3)若对于任意,不等式f()+f()恒成立,求的取值范围. 19.如图所示,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面于圆O所在平面垂直,且D,DCBC,DE=BC=2,AC=CD=3. (1)证明:OE平面ACD. (2)证明:平面ACD平面BCDE. (3)求三棱锥E-ABD的体积. | ||||||||||||||||||||||||||||||
::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! |